SET 3 -

- 1. The first law of thermodynamics fails to explain
 - a) Conservation of energy
 - b) Direction of a process
 - c) Conversion of heat to work
 - d) Pressure-volume work
- 2. The second law of thermodynamics explains
 - a) Direction of spontaneous change
 - b) Conservation of mass
 - c) Energy equivalence
 - d) All of these
- 3. The second law introduces the concept of
 - a) Enthalpy
 - b) Entropy
 - c) Internal energy
 - d) Heat capacity
- 4. Entropy is a measure of
 - a) Energy of system
 - b) Disorder or randomness
 - c) Pressure of system
 - d) Heat content
- 5. Symbol of entropy is
 - a) H
 - b) S
 - c) G
 - d) T
- 6. Unit of entropy in SI is
 - a) J mol-1 K-1
 - b) J mol⁻¹
 - c) kJ mol⁻¹
 - d) cal K⁻¹
- 7. When disorder increases, entropy
 - a) Increases
 - b) Decreases
 - c) Remains constant
 - d) Becomes zero
- 8. When a gas expands freely, entropy
 - a) Increases

b) Decreasesc) Remains samed) Becomes negative

 9. For a reversible process, change in entropy (ΔS) is – a) Maximum b) Minimum c) Zero d) Undefined 	
 10. For an irreversible process, total entropy change is – a) Positive b) Negative c) Zero d) Undefined 	
 11. Entropy change (ΔS) for a reversible process is given by – a) ΔS = q / T b) ΔS = q / P c) ΔS = qT d) ΔS = T / q 	
12. For an isothermal reversible expansion of an ideal gas, ΔS = a) nR ln(V ₂ /V ₁) b) nR ln(V ₁ /V ₂) c) nR ln(P ₁ /P ₂) d) nR ln(T ₂ /T ₁)	_
 13. If ΔS of universe > 0, the process is – a) Spontaneous b) Non-spontaneous c) Equilibrium d) None 	
 14. For an isolated system at equilibrium, ΔS of universe is – a) Zero b) Positive c) Negative d) Infinite 	
 15. For a spontaneous process, entropy of system – a) Increases b) Decreases c) Remains constant d) None 	

16. The second law can be expressed as -

a) ∆S universe ≥ 0

b) ΔS universe = 0
c) ΔS system = 0
d) ΔS surroundings = 0
17. Which process increases entropy?
a) Melting of ice
b) Freezing of water
c) Condensation
d) Crystallization
18. Which process decreases entropy?
a) Sublimation
b) Evaporation
c) Condensation
d) Melting
19. In a reversible process, the system and surroundings –
a) Are in equilibrium at every stage
b) Are far from equilibrium
c) Change abruptly
d) Do not change
20. Entropy change of the universe for a reversible process is –
a) Zero
b) Positive
c) Negative
d) Infinite
21. Entropy change of the universe for an irreversible process is –
a) Positive
b) Negative
c) Zero
d) None
22. The total entropy change for spontaneous process is –
a) Greater than zero
b) Less than zero
c) Zero
d) Infinite
23. Which law states that the entropy of a perfect crystal at 0 K is zero?
a) First law
b) Second law
c) Third law
5,a istr

<u>_</u>	<u>LASS XI CHE CHI</u>
	d) Hess's law
	 24. The third law of thermodynamics helps to calculate – a) Absolute entropy b) Relative entropy c) Gibbs energy d) Work done
	25. For an ideal gas, the entropy change is given by – a) ΔS = nR ln(V ₂ /V ₁) b) ΔS = nR ln(P ₂ /P ₁) c) ΔS = nR ln(T ₂ /T ₁) d) None
	26. Entropy change when ice melts to water is – a) Positive b) Negative c) Zero d) None
	27. Entropy change when steam condenses to water is - a) Positive b) Negative c) Zero d) None
	28. If the disorder decreases, ΔS is – a) Positive b) Negative c) Zero d) Infinite
	29. In a spontaneous process – a) ΔS universe > 0 b) ΔS universe < 0 c) ΔS universe = 0 d) ΔS system = 0
	 30. The expression ΔS = qrev / T is valid only for – a) Reversible process b) Irreversible process c) Both d) None

- 31. Entropy change for vaporization of liquid is a) Positive
 - b) Negative

CLASS XI	CHE	CH: 5			
c) Zero d) None					
32. Entropy change for freezing of liquid is –a) Positiveb) Negative					

- c) Zero
- d) None
- 33. In which case will entropy be maximum?
 - a) Gas
 - b) Liquid
 - c) Solid
 - d) Crystal
- 34. When two gases mix spontaneously, the entropy
 - a) Increases
 - b) Decreases
 - c) Remains same
 - d) Becomes zero
- 35. The equation $\Delta G = \Delta H T\Delta S$ is known as
 - a) Gibbs equation
 - b) Nernst equation
 - c) Clausius equation
 - d) Joule-Thomson equation
- 36. For a spontaneous process, ∆G is
 - a) Negative
 - b) Positive
 - c) Zero
 - d) Infinite
- 37. For a non-spontaneous process, ΔG is
 - a) Negative
 - b) Positive
 - c) Zero
 - d) Undefined
- 38. At equilibrium, ΔG is
 - a) Zero
 - b) Positive
 - c) Negative
 - d) Infinite
- 39. If ΔH = negative and ΔS = positive, then ΔG
 - a) Always negative

- b) Always positive
- c) Zero
- d) Variable
- 40. If ΔH = positive and ΔS = negative, then ΔG
 - a) Always positive
 - b) Always negative
 - c) Zero
 - d) Variable
- 41. $\Delta G = 0$ indicates
 - a) Spontaneous reaction
 - b) Non-spontaneous reaction
 - c) Equilibrium condition
 - d) None
- 42. Gibbs free energy is defined as
 - a) G = H TS
 - b) G = H + TS
 - c) G = T HS
 - d) G = U PV
- 43. The unit of Gibbs free energy is
 - a) J mol⁻¹
 - b) kJ mol⁻¹
 - c) Both (a) and (b)
 - d) None
- 44. When $\Delta G < 0$, reaction is
 - a) Spontaneous
 - b) Non-spontaneous
 - c) Equilibrium
 - d) Endothermic
- 45. When $\Delta G > 0$, reaction is
 - a) Spontaneous
 - b) Non-spontaneous
 - c) Equilibrium
 - d) Exothermic
- 46. If ΔH and ΔS both are positive, reaction is spontaneous at
 - a) High temperature
 - b) Low temperature
 - c) Zero Kelvin
 - d) Never spontaneous

- 47. If ΔH and ΔS both are negative, reaction is spontaneous at
 - a) High temperature
 - b) Low temperature
 - c) 25°C
 - d) Never spontaneous
- 48. For an endothermic reaction to be spontaneous
 - a) ΔS should be positive and large
 - b) ΔS should be negative
 - c) ΔG should be positive
 - d) None
- 49. Entropy is a measure of
 - a) Energy dispersion
 - b) Orderliness
 - c) Work capacity
 - d) Potential energy
- 50. The second law of thermodynamics can also be stated as
 - a) All spontaneous processes increase entropy of the universe
 - b) All spontaneous processes decrease entropy of the universe
 - c) Entropy remains constant
 - d) None

MANSWER KEY – SET 3

1-b 2-a 3-b 4-b 5-b 6-a 7-a 8-a 9-c 10-a 11-a 12-a 13-a 14-a 15-a 16-a 17-a 18-c 19-a 20-a 21-a 22-a 23-c 24-a 25-a 26-a 27-b 28-b 29-a 30-a 31-a 32-b 33-a 34-a 35-a 36-a 37-b 38-a 39-a 40-a 41-c 42-a 43-c 44-a 45-b 46-a 47-b 48-a 49-a 50-a