Set 3 – Cell Cycle and Cell Division

1. A cell having 20 chromosomes at G₁ phase of the cell cycle will have how many chromatids after S phase?A) 20 B) 40 C) 10 D) 80
2. If a diploid cell undergoes mitotic division, the daughter cells formed will be — A) Haploid B) Diploid C) Triploid D) Polyploid
3. During mitosis, each chromosome is attached to the spindle fibers by —A) Kinetochore B) Centriole C) Centrosome D) Chromatid
4. The mitotic apparatus disappears during —A) Prophase B) Anaphase C) Telophase D) Cytokinesis
5. The process which leads to separation of daughter chromosomes is —A) Cytokinesis B) Karyokinesis C) Chromatinization D) Fertilization
6. The stage at which chromosomes are most condensed and best visible under a microscope is — A) Prophase B) Metaphase C) Anaphase D) Telophase
7. The term "equatorial plate" refers to — A) Arrangement of chromosomes at metaphase B) Formation of spindle fibers C) Cleavage furrow D) Nuclear plate formation
8. During mitosis, the centromeres split and chromatids move to opposite poles during — A) Prophase B) Metaphase C) Anaphase D) Telophase
9. The nuclear envelope reforms around chromosomes during —A) Prophase B) Metaphase C) Anaphase D) Telophase
10. The phase between two mitotic divisions is called —A) Interphase B) Metaphase C) Cytokinesis D) Telophase
11. G ₁ , S, and G ₂ phases collectively are called — A) Interphase B) Division phase C) Resting phase D) Growth phase
12. The phase of cell cycle where DNA replication occurs is — A) G_1 B) S C) G_2 D) M
13. Protein synthesis for spindle fiber formation occurs during — A) G ₁ phase B) S phase C) G ₂ phase D) M phase
 14. Which of the following correctly represents mitotic sequence? A) Prophase → Metaphase → Anaphase → Telophase → B) Prophase → Telophase → Metaphase → Prophase → Anaphase D) None

15. If mitosis occurs in a cell having 8 chromosomes, then the number of chromosomes in each daughter cell will be — A) 4 B) 8 C) 16 D) 32
16. In meiosis, the number of chromosomes in the daughter cells is —A) Same as parent cell B) Half of parent cell C) Double D) Variable
 17. Meiosis I is reductional because — A) Homologous chromosomes separate B) Sister chromatids separate C) DNA replicates D) Crossing over occurs
18. The stage of meiosis where chiasmata are first visible is —A) Pachytene B) Diplotene C) Diakinesis D) Zygotene
19. The structure responsible for genetic recombination during meiosis is —A) Synaptonemal complex B) Chromosome C) Centriole D) Spindle
20. The stage of meiosis characterized by terminalization of chiasmata is —A) Pachytene B) Diplotene C) Diakinesis D) Zygotene
21. The number of chromatids per chromosome after S phase is — A) One B) Two C) Four D) Eight
 22. The mitotic division ensures — A) Genetic stability B) Genetic variation C) Chromosome reduction D) Genetic mutation
23. Meiosis helps in —A) Constancy of chromosome number B) Variation in population C) Formation of gametes D) All of these
24. The G ₂ phase of cell cycle is characterized by — A) DNA replication B) Protein synthesis C) Cytokinesis D) Crossing over
25. The spindle fiber is composed of —A) Microtubules B) Actin filaments C) Collagen fibers D) Chromatin
26. In animal cells, cleavage furrow formation during cytokinesis involves — A) Microtubules B) Microfilaments C) Intermediate filaments D) None
27. Cell plate formation during cytokinesis occurs due to fusion of —A) Golgi vesicles B) Ribosomes C) Lysosomes D) Endoplasmic reticulum
28. If there are 10 chromosomes in a meiocyte (2n = 10), the number of chromosomes in each gamete would be — A) 5 B) 10 C) 15 D) 20
29. In mitosis, the daughter cells are —A) Identical to parent cell B) Different from parent cell C) Haploid D) Genetically variable
30. The centromere plays an important role during —

A) Chromosome movement B) Cytokinesis C) Crossing over D) DNA replication

 31. The chromosomal movement toward opposite poles is due to — A) Contraction of spindle fibers B) Expansion of cytoplasm C) Repulsion of chromatids D) Movement of centrioles
 32. The term "bivalent" indicates — A) Two homologous chromosomes paired together B) Two chromatids C) Two centromeres D) Two nuclei
33. The nuclear envelope completely disappears in —A) Late prophase B) Early prophase C) Anaphase D) Telophase
34. The crossing over produces —A) Mutation B) New gene combinations C) Polyploidy D) Gene deletion
35. The point of contact between non-sister chromatids of homologous chromosomes is called —A) Chiasma B) Centromere C) Chromomere D) Synapse
 36. The main event of anaphase I of meiosis is — A) Separation of homologous chromosomes B) Separation of chromatids C) Reappearance of nucleolus D) Formation of nuclear membrane
 37. The chromosomes that take part in crossing over are — A) Non-sister chromatids of homologous chromosomes B) Sister chromatids C) Non-homologous chromosomes D) All chromatids
38. If 2n = 46, the number of chromosomes at metaphase I is — A) 46 B) 23 C) 92 D) 69
 39. Chromosome number is restored after fertilization because — A) Fusion of haploid gametes B) Crossing over C) Independent assortment D) Synapsis
 40. In meiosis II, centromeres divide at — A) Anaphase II B) Anaphase I C) Metaphase II D) Telophase II
41. If a cell fails to undergo cytokinesis after nuclear division, it results in — A) Multinucleated condition B) Polyploidy C) Haploidy D) Cell death
42. The phase of cell cycle where cell stops division permanently is — A) G_0 B) G_1 C) G_2 D) S
43. Which cell organelle disappears during mitosis?A) Nucleolus B) Ribosome C) Golgi apparatus D) Endoplasmic reticulum
44. The spindle fibers shorten during — A) Anaphase B) Metaphase C) Prophase D) Telophase
45. Which of the following ensures genetic variation in sexually reproducing organisms? A) Independent assortment B) Crossing over C) Random fertilization D) All of these

- 46. A cell at the end of G2 phase has —
- A) Double the amount of DNA as compared to G_1 phase B) Half the DNA C) Same amount of DNA D) No DNA
- **47.** Meiosis takes place only in —
- A) Germ cells B) Somatic cells C) Muscle cells D) Nerve cells
- 48. Mitosis and meiosis differ in that meiosis —
- A) Occurs in reproductive cells B) Reduces chromosome number C) Leads to genetic variation D) All of these
- **49.** Which of the following ensures equal distribution of chromosomes during cell division?
- A) Spindle apparatus B) Nucleolus C) Ribosomes D) Golgi body
- **50.** In mitosis, the phase that follows metaphase is —
- A) Anaphase B) Telophase C) Cytokinesis D) Prophase

Answer Key (Set 3)

1-B, 2-B, 3-A, 4-C, 5-B, 6-B, 7-A, 8-C, 9-D, 10-A, 11-A, 12-B, 13-C, 14-A, 15-B, 16-B, 17-A, 18-B, 19-A, 20-C, 21-B, 22-A, 23-D, 24-B, 25-A, 26-B, 27-A, 28-A, 29-A, 30-A, 31-A, 32-A, 33-A, 34-B, 35-A, 36-A, 37-A, 38-A, 39-A, 40-A, 41-A, 42-A, 43-A, 44-A, 45-D, 46-A, 47-A, 48-D, 49-A, 50-A.