SET 3 – WORK, ENERGY AND POWER

4. When would in done on a hady anarry in	
 When work is done on a body, energy is: (a) destroyed 	
(b) created	
(c) transferred	
(d) constant	
2. If F = 6 N, displacement = 3 m, and the angle between F and displacement = 60°, wor	k
done is:	
(a) 9 J	
(b) 18 J	
(c) 12 J	
(d) 6 J	
3. The work done by a man carrying a load on a level road is:	
(a) positive	
(b) zero	
(c) negative	
(d) infinite	
4. The power of an engine which lifts 200 kg of coal per second through 10 m is (g = 10	
m/s²):	
(a) 2 × 10⁴ W	
(b) $2 \times 10^3 \text{ W}$	
(c) 10 ³ W	
(d) 10⁵ W	
5. The potential energy of a body of mass m at a height h above the ground is:	
(a) ½ mgh	
(b) mgh	
(c) 2mgh	
(d) zero	

6. The unit of mechanical energy is the same as that of:

(a) power

(b) work
(c) acceleration
(d) momentum
7. Work done by a force on a body is positive when the angle between force and displacement is: (a) 0°
(b) 90°
(c) 180° (d) 120°
8. A body moving with uniform velocity has: (a) zero acceleration and non-zero work (b) zero acceleration and zero work done by net force
(c) positive acceleration (d) variable energy
O. The Clausit of energy is equivalent to:
9. The SI unit of energy is equivalent to:(a) N/m
(b) Nm
(c) N/s
(d) m/N
10. When the net work done on a body is zero, its kinetic energy:(a) increases
(b) decreases
(c) remains unchanged
(d) becomes infinite
44. A O los bell is desputed from a beingt of E as the kinetic energy just before bitting the
11. A 2 kg ball is dropped from a height of 5 m. Its kinetic energy just before hitting the ground ($g = 10 \text{ m/s}^2$) is:
(a) 50 J
(b) 25 J
(c) 75 J
(d) 100 J

(a) 0.125 J (b) 1.25 J (c) 12.5 J (d) 0.0125 J 13. The work done by a force of 10 N through a distance of 0.5 m at 60° with displacement	12. When a spring is stretched by 5 cm and the spring constant is 100 N/m, potential energy					
(b) 1.25 J (c) 12.5 J (d) 0.0125 J 13. The work done by a force of 10 N through a distance of 0.5 m at 60° with displacement is: (a) 2.5 J (b) 5 J (c) 3 J (d) 10 J 14. Which quantity remains conserved when only conservative forces act? (a) kinetic energy (b) potential energy (c) mechanical energy (d) thermal energy 15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne						
(c) 12.5 J (d) 0.0125 J 13. The work done by a force of 10 N through a distance of 0.5 m at 60° with displacement is: (a) 2.5 J (b) 5 J (c) 3 J (d) 10 J 14. Which quantity remains conserved when only conservative forces act? (a) kinetic energy (b) potential energy (c) mechanical energy (d) thermal energy 15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne						
13. The work done by a force of 10 N through a distance of 0.5 m at 60° with displacement is: (a) 2.5 J (b) 5 J (c) 3 J (d) 10 J 14. Which quantity remains conserved when only conservative forces act? (a) kinetic energy (b) potential energy (c) mechanical energy (d) thermal energy 15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne						
13. The work done by a force of 10 N through a distance of 0.5 m at 60° with displacement is: (a) 2.5 J (b) 5 J (c) 3 J (d) 10 J 14. Which quantity remains conserved when only conservative forces act? (a) kinetic energy (b) potential energy (c) mechanical energy (d) thermal energy 15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne						
is: (a) 2.5 J (b) 5 J (c) 3 J (d) 10 J 14. Which quantity remains conserved when only conservative forces act? (a) kinetic energy (b) potential energy (c) mechanical energy (d) thermal energy 15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne	(d) 0.0125 J					
is: (a) 2.5 J (b) 5 J (c) 3 J (d) 10 J 14. Which quantity remains conserved when only conservative forces act? (a) kinetic energy (b) potential energy (c) mechanical energy (d) thermal energy 15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne	13. The work done by a force of 10 N through a distance of 0.5	m at 60° with displacement				
(b) 5 J (c) 3 J (d) 10 J 14. Which quantity remains conserved when only conservative forces act? (a) kinetic energy (b) potential energy (c) mechanical energy (d) thermal energy 15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne	is:					
(c) 3 J (d) 10 J 14. Which quantity remains conserved when only conservative forces act? (a) kinetic energy (b) potential energy (c) mechanical energy (d) thermal energy 15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne	(a) 2.5 J					
(c) 3 J (d) 10 J 14. Which quantity remains conserved when only conservative forces act? (a) kinetic energy (b) potential energy (c) mechanical energy (d) thermal energy 15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne	(b) 5 J					
14. Which quantity remains conserved when only conservative forces act? (a) kinetic energy (b) potential energy (c) mechanical energy (d) thermal energy 15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne						
(a) kinetic energy (b) potential energy (c) mechanical energy (d) thermal energy 15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne						
(a) kinetic energy (b) potential energy (c) mechanical energy (d) thermal energy 15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne						
(b) potential energy (c) mechanical energy (d) thermal energy 15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne		forces act?				
(c) mechanical energy (d) thermal energy 15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne						
15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne						
15. The dot product of vectors gives a: (a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne						
(a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne	(d) thermal energy					
(a) vector (b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne						
(b) scalar (c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne	15. The dot product of vectors gives a:					
(c) tensor (d) none 16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne	(a) vector					
16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne	(b) scalar					
16. The angle between force and displacement when no work is done is: (a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne	(c) tensor					
(a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne	(d) none					
(a) 0° (b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne						
(b) 90° (c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne	16. The angle between force and displacement when no work i	s done is:				
(c) 45° (d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne	(a) 0°					
(d) 180° 17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne	(b) 90°					
17. The unit of work in CGS system is: (a) erg (b) joule (c) dyne	(c) 45°					
(a) erg(b) joule(c) dyne	(d) 180°					
(a) erg(b) joule(c) dyne	17. The unit of work in CGS system is:					
(b) joule (c) dyne						
(c) dyne						

 18. Work done by a variable force is calculated by: (a) area under F-x curve (b) slope of F-x curve (c) height of the graph (d) tangent to F-x curve
19. In a circular motion, the work done by centripetal force is: (a) positive (b) negative (c) zero (d) maximum
20. Kinetic energy is directly proportional to: (a) mass only (b) velocity only (c) square of velocity (d) cube of velocity
21. A 1000 W motor lifts a mass of 100 kg. How high can it raise it in 5 s? (g = 10 m/s²) (a) 1 m (b) 5 m (c) 10 m (d) 20 m
22. The total energy of a conservative system is:(a) increasing(b) constant(c) decreasing(d) zero
23. The work done per unit time is: (a) momentum (b) power (c) impulse (d) energy

24. When kinetic energy inc (a) 2 times (b) 3 times (c) √3 times (d) 4 times	creases by 300%, velocity increases by:
25. The graph of potential e	energy of a spring vs displacement is a:
(a) straight line	
(b) circle	
(c) parabola (d) hyperbola	
26. 1 joule = ?	
(a) 1 N/s	
(b) 1 N/m	
(c) 1 N × m	
(d) 1 N/m ²	
27. If the force is zero, work (a) zero (b) maximum (c) negative (d) positive	done is:
29. The unit of apring const	ant k in:
28. The unit of spring constant (a) N/m	ant kis.
(b) J/m	
(c) m/N	
(d) Nm	
29. A 200 W electric bulb w (a) 400 J (b) 0.4 kWh (c) 4000 J (d) 4 kWh	orks for 2 hours. Energy consumed = ?

30. The potential energy of a spring is $\frac{1}{2}$ kx². When x doubles, PE becomes:		
(a) 2 times		
(b) 3 times		
(c) 4 times		
(d) ½ times		
31. The mechanical energy of a simple pendulum is:		
(a) conserved		
(b) increasing		
(c) decreasing		
(d) variable		
32. The area under a power-time graph gives:		
(a) work		
(b) energy		
(c) both (a) and (b)		
(d) velocity		
(u) volocity		
33. Work done by the frictional force is:		
(a) always positive		
(b) always negative		
(c) always zero		
(d) depends on situation		
34. When a car stops suddenly, kinetic energy is converted into:		
(a) sound and heat energy		
(b) gravitational energy		
(c) potential energy		
(d) mechanical energy		
35. The total mechanical energy of a body is the sum of:		
(a) kinetic and potential energy		
(b) kinetic and heat energy		
(c) potential and thermal energy		
(d) only potential energy		

36. The angle between vectors A = 3i and B = 2j is:	
(a) 0°	
(b) 90°	
(c) 45°	
(d) 180°	
37. The potential energy of a compressed spring is:	
(a) positive	
(b) negative	
(c) zero	
(d) infinite	
38. Work done in bringing a body from infinity to a point again.	ainst gravity is called:
(a) potential energy	
(b) kinetic energy	
(c) mechanical energy	
(d) binding energy	
39. When displacement and force are opposite, work is:(a) zero(b) negative(c) positive(d) maximum	
40. If a particle moves along x-axis under a force F(x), the	work done from x_1 to x_2 is:
(a) ∫F dx	
(b) F × x	
(c) Fx ²	
(d) F/x	
41. The potential energy of a system is minimum when: (a) stable equilibrium (b) unstable equilibrium (c) neutral equilibrium (d) metastable	

42. Work-energy theorem is applicable for:
(a) constant force only
(b) variable force also
(c) only non-conservative force
(d) only frictionless systems
43. The unit of energy used by power companies is:
(a) joule
(b) watt
(c) kilowatt-hour
(d) horsepower
44. If kinetic energy $K = \frac{1}{2} \text{ mv}^2$, then $V = ?$
(a) $\sqrt{(K/m)}$
(a) √(1√(11)) (b) √(2K/m)
(c) K/m
(d) 2K/m
45. When force and displacement are perpendicular, work done = ?
(a) zero
(b) minimum
(c) maximum
(d) infinite
40. The charge in his discourse of a bady is a good to the
46. The change in kinetic energy of a body is equal to the:
(a) total energy (b) power
(c) work done on it
(d) potential energy
(d) potential energy
47. The mechanical energy of a freely falling body:
(a) increases
(b) decreases
(c) remains constant
(o) remains sonstant
(d) becomes zero

- **48.** If work is done against friction, mechanical energy is:
- (a) conserved
- (b) partly converted to heat
- (c) lost completely
- (d) constant
- **49.** The dot product of two opposite vectors is:
- (a) positive
- (b) negative
- (c) zero
- (d) undefined
- **50.** Work done by gravitational force on a satellite revolving around Earth in a circular orbit is:
- (a) zero
- (b) positive
- (c) negative
- (d) variable

MANSWERS - SET 3

- 1 (c) 2 (a) 3 (b) 4 (a) 5 (b) 6 (b) 7 (a) 8 (b) 9 (b) 10 (c)
- 11 (a) 12 (a) 13 (a) 14 (c) 15 (b) 16 (b) 17 (a) 18 (a) 19 (c) 20 (c)
- 21 (b) 22 (b) 23 (b) 24 (a) 25 (c) 26 (c) 27 (a) 28 (a) 29 (b) 30 (c)
- 31 (a) 32 (c) 33 (b) 34 (a) 35 (a) 36 (b) 37 (a) 38 (a) 39 (b) 40 (a)
- 41 (a) 42 (b) 43 (c) 44 (b) 45 (a) 46 (c) 47 (c) 48 (b) 49 (b) 50 (a)