CLASS XI, CH-14

Set 2: Knowledge-Based MCQs
The pharynx opens into the trachea through: A) Bronchi
B) Larynx C) Nasal chamber
D) Alveoli

- **2.** The larynx is commonly known as the:
- A) Sound box
- B) Wind pipe
- C) Food pipe
- D) Nose cavity
- **3.** The primary bronchi divide into:
- A) Terminal bronchioles
- B) Secondary and tertiary bronchi
- C) Alveoli
- D) Pleura
- **4.** Cartilaginous rings in the trachea are:
- A) Complete
- B) Incomplete
- C) Absent
- D) Bony
- 5. The pleural membranes enclose:
- A) Heart
- B) Lungs
- C) Brain
- D) Liver
- **6.** The inner pleural membrane is in contact with:
- A) Thoracic wall
- B) Lungs
- C) Ribs
- D) Diaphragm
- 7. The conducting part of the respiratory system is responsible for:
- A) Gas exchange
- B) Air transport, cleaning, and humidification
- C) Sound production only
- D) None of these
- **8.** The respiratory or exchange part includes:
- A) Bronchi and bronchioles
- B) Trachea and larynx

A) Elastic ribs B) Closed pleural cavity C) Laryngeal opening D) Bronchioles	
11. Inspiration occurs when: A) Diaphragm relaxes B) Thoracic volume decreases C) Intrapulmonary pressure becomes negative D) Rib cage moves downward	
12. The intercostal muscles are located: A) In diaphragm B) Between ribs C) In neck D) In alveoli	
13. The contraction of external intercostal muscles:A) Raises the ribs and sternumB) Lowers the ribsC) Contracts alveoliD) None	
14. The movement of air into the lungs is due to:A) Pressure gradientB) Temperature differenceC) Salinity differenceD) Osmotic difference	
15. Relaxation of diaphragm leads to:A) Increase in thoracic volumeB) ExpirationC) InspirationD) None	
16. The volume of air exchanged per minute in a healthy person is about: A) 2000–3000 mL B) 6000–8000 mL C) 10,000–12,000 mL D) 3000–4000 mL	
17. Instrument used to measure respiratory volume and capacity:A) Spirometer	

C) Alveoli and alveolar ducts

9. The thoracic cavity is bounded below by:

10. The thoracic chamber is airtight due to:

D) Nasal cavity

B) Diaphragm C) Pleura D) Sternum

A) Ribs

B) Barometer C) Manometer D) Flowmeter
18. Inspiratory capacity equals: A) TV + IRV B) TV + ERV C) ERV + RV D) IRV + ERV
19. Expiratory capacity equals:A) TV + ERVB) TV + IRVC) IRV + ERVD) ERV + RV
20. Vital capacity includes: A) IRV + TV + ERV B) TV + IRV C) ERV + RV D) IRV + RV
21. Total lung capacity equals: A) VC + RV B) ERV + IRV C) ERV + TV D) IRV + TV
22. The main site of gas exchange in the human body is:A) BronchiB) AlveoliC) TracheaD) Larynx
23. The process of gas exchange depends primarily on:A) Enzyme activityB) Pressure gradientC) HormonesD) Electrical signals
24. The partial pressure of oxygen in atmospheric air is: A) 40 mm Hg B) 104 mm Hg C) 159 mm Hg D) 95 mm Hg
25. The partial pressure of CO ₂ in alveolar air is: A) 0.3 mm Hg B) 40 mm Hg C) 45 mm Hg D) 104 mm Hg

26. The alveolar membrane consists of: A) One thick epithelial layer B) Three thin layers C) Two thick layers D) One muscular layer A) pO₂ in alveoli < pO₂ in blood

- 27. Oxygen diffuses from alveoli to blood because:
- B) pO₂ in alveoli > pO₂ in blood
- C) pCO₂ in alveoli > pCO₂ in blood
- D) None
- 28. CO₂ diffuses from tissues to blood because:
- A) pCO₂ in tissues > pCO₂ in blood
- B) pCO₂ in blood > pCO₂ in tissues
- C) pO₂ in blood > pO₂ in tissues
- D) None
- 29. Solubility of CO2 is:
- A) Equal to O₂
- B) 10-15 times higher
- C) 20-25 times higher
- D) 2 times higher
- 30. Percentage of O2 transported dissolved in plasma:
- A) 97%
- B) 3%
- C) 20%
- D) 10%
- 31. Percentage of CO₂ transported as carbaminohaemoglobin:
- A) 20-25%
- B) 70%
- C) 7%
- D) 50%
- 32. Oxygen combines with haemoglobin in a:
- A) Reversible manner
- B) Irreversible manner
- C) Temporary manner only
- D) Non-specific way
- **33.** The curve obtained by plotting pO₂ vs % Hb saturation is:
- A) Oxyhaemoglobin curve
- B) Oxygen dissociation curve
- C) Carbonic curve
- D) Respiratory curve
- 34. At alveolar site, conditions favour:
- A) Oxyhaemoglobin formation
- B) Oxyhaemoglobin dissociation
- C) CO₂ formation
- D) Hydrogen ion accumulation

35. At tissue site, oxygen dissociates due to:
A) High pO ₂ , low pCO ₂ B) Low pO ₂ , high pCO ₂ , high temperature
C) Low pCO ₂ , low temperature
D) Low H ⁺ concentration
 36. Each 100 mL of oxygenated blood delivers about mL O₂ to tissues. A) 2 mL B) 5 mL C) 10 mL D) 20 mL
37. CO₂ is transported in blood mainly as:
A) CO ₂ gas
B) Bicarbonate ions
C) Carboxyhaemoglobin
D) Carbonic acid
38. Carbonic anhydrase catalyses:
A) $CO_2 + H_2O \Rightarrow H_2CO_3$
B) O_2 + Hb \rightleftharpoons Hb O_2
C) $CO_2 + Hb \rightleftharpoons HbCO_2$
D) $H_2O + O_2 \rightleftharpoons H_2O_2$
39. At the alveoli, the carbonic acid breaks down into:
A) CO ₂ and H ₂ O
B) CO and H₂O
C) H ₂ and CO ₂
D) None
40. Respiratory rhythm centre is located in:
A) Pons
B) Medulla oblongata
C) Cerebellum
D) Cerebrum
41. Pneumotaxic centre helps in:
A) Regulating inspiration duration
B) Stimulating diaphragm directly
C) Controlling heart rate
D) Adjusting blood pressure
42. Chemosensitive area responds to:
A) High O₂ levels
B) High CO₂ and H⁺ levels
C) Low temperature
D) Low pH only

43. Oxygen plays what role in respiration regulation?

A) Major
B) Insignificant
C) Central
D) Indirect

- 44. Asthma involves:
- A) Alveolar wall rupture
- B) Inflammation of bronchi/bronchioles
- C) Dust accumulation
- D) Lung cancer
- **45.** Emphysema involves:
- A) Decrease in alveolar surface area
- B) Increase in alveolar surface area
- C) Constriction of trachea
- D) None
- 46. Major cause of emphysema is:
- A) Smoking
- B) Dust exposure
- C) Asthma
- D) Cold weather
- **47.** Occupational lung disease is due to:
- A) Exposure to sunlight
- B) Dust inhalation
- C) Fungal infection
- D) High humidity
- 48. Occupational lung disease may cause:
- A) Fibrosis
- B) Emphysema
- C) Pneumonia
- D) Both A and B
- **49.** The best protection for occupational respiratory disorder:
- A) Regular exercise
- B) Wearing masks
- C) Sleeping early
- D) High-protein diet
- **50.** The respiratory surface of humans is lined by:
- A) Stratified epithelium
- B) Squamous epithelium
- C) Columnar epithelium
- D) Ciliated epithelium

Answer Key (Set 2)

1-B, 2-A, 3-B, 4-B, 5-B, 6-B, 7-B, 8-C, 9-B, 10-B, 11-C, 12-B, 13-A, 14-A, 15-B, 16-B, 17-A, 18-A, 19-A, 20-A, 21-A, 22-B, 23-B, 24-C, 25-B, 26-B, 27-B, 28-A, 29-C, 30-B, 31-A, 32-A, 33-B, 34-A, 35-B, 36-B, 37-B, 38-A, 39-A, 40-B, 41-A, 42-B, 43-B, 44-B, 45-A, 46-A, 47-B, 48-D, 49-B, 50-B.