SET 2 – Alkenes (MCQs)

- 1. Alkenes are
 - a) Saturated hydrocarbons
 - b) Unsaturated hydrocarbons
 - c) Aromatic compounds
 - d) Alcohols
- 2. The general formula of alkenes is
 - a) CnH2n+2
 - b) CnH2n
 - c) CnH2n-2
 - d) CnHn
- 3. The first stable member of alkene series is
 - a) Methene
 - b) Ethene
 - c) Propene
 - d) Butene
- 4. The common name of ethene is
 - a) Acetylene
 - b) Ethylene
 - c) Olefin
 - d) Ethanol
- 5. The suffix used in IUPAC nomenclature of alkenes is
 - a) -ane
 - b) -ene
 - c) -yne
 - d) -ol
- 6. The double bond in alkenes consists of
 - a) One σ and one π bond
 - b) Two σ bonds
 - c) Two π bonds
 - d) One δ bond
- 7. The C=C bond length in alkenes is approximately
 - a) 120 pm
 - b) 134 pm
 - c) 154 pm
 - d) 180 pm
- 8. The hybridisation of carbon in ethene is
 - a) sp³
 - b) sp²

- c) sp
- d) dsp²
- 9. The bond angle in ethene molecule is about
 - a) 90°
 - b) 109.5°
 - c) 120°
 - d) 180°
- 10. The π bond in ethene is formed by
 - a) End-on overlap of sp² orbitals
 - b) Lateral overlap of p orbitals
 - c) Overlap of s orbitals
 - d) Overlap of sp orbitals
- 11. Alkenes are also known as
 - a) Paraffins
 - b) Olefins
 - c) Aromatics
 - d) Alkynes
- 12. The general formula C₄H₃ may represent
 - a) Only one compound
 - b) Two compounds
 - c) Three compounds
 - d) Four compounds
- 13. 1-Butene and 2-butene are examples of
 - a) Chain isomers
 - b) Position isomers
 - c) Functional isomers
 - d) Metamers
- 14. 1-Butene and 2-methylprop-1-ene are
 - a) Chain isomers
 - b) Geometrical isomers
 - c) Functional isomers
 - d) Tautomers
- 15. Geometrical isomerism is shown by compounds having
 - a) Single bond
 - b) Double bond
 - c) Triple bond
 - d) Aromatic ring
- 16. The two forms of geometrical isomerism are
 - a) Chain and position
 - b) Cis and trans

- c) Optical and structural
- d) Tautomeric and mesomeric
- 17. In cis isomer, identical groups are
 - a) On the same side
 - b) On opposite sides
 - c) At right angles
 - d) At the ends
- 18. The compound CH₃CH=CHCH₃ shows
 - a) Chain isomerism
 - b) Cis-trans isomerism
 - c) Functional isomerism
 - d) None
- 19. The trans isomer of but-2-ene is
 - a) More polar
 - b) Less polar
 - c) More reactive
 - d) Unstable
- 20. Dipole moment of trans-but-2-ene is
 - a) Zero
 - b) 0.33 D
 - c) 1.0 D
 - d) 3.3 D
- 21. Which compound will not show geometrical isomerism?
 - a) 2-butene
 - b) 2-pentene
 - c) 1-butene
 - d) 2-hexene
- 22. The addition of H₂ to alkenes gives
 - a) Alkanes
 - b) Alkynes
 - c) Aromatics
 - d) Alcohols
- 23. The catalyst used for hydrogenation of alkenes is
 - a) AICI₃
 - b) Ni, Pd or Pt
 - c) H₂SO₄
 - d) ZnCl₂
- 24. The addition of H₂ across C=C bond is
 - a) Dehydration
 - b) Oxidation

- c) Reduction
- d) Polymerisation
- 25. The test for unsaturation is
 - a) Bromine water test
 - b) Lime water test
 - c) Tollen's test
 - d) lodine test
- 26. Bromine water decolorises with alkenes due to
 - a) Oxidation
 - b) Substitution
 - c) Addition
 - d) Elimination
- 27. The reddish-brown color of bromine solution in CCl₄ disappears with
 - a) Alkanes
 - b) Alkenes
 - c) Aromatics only
 - d) None
- 28. When HBr is added to propene, the major product is
 - a) 1-bromopropane
 - b) 2-bromopropane
 - c) 3-bromopropane
 - d) 1,2-dibromopropane
- 29. The above reaction follows
 - a) Markovnikov's rule
 - b) Peroxide rule
 - c) Kharash rule
 - d) Saytzeff rule
- 30. According to Markovnikov's rule, the negative part of adding molecule goes to
 - a) More hydrogenated carbon
 - b) Less hydrogenated carbon
 - c) Both equally
 - d) None
- 31. In presence of peroxide, addition of HBr to propene gives
 - a) 2-bromopropane
 - b) 1-bromopropane
 - c) 1,2-dibromopropane
 - d) Propanol
- 32. The peroxide effect is also called
 - a) Markovnikov effect
 - b) Anti-Markovnikov effect

- c) Addition effect d) Inductive effect 33. Peroxide effect occurs only with a) HCI b) HI c) HBr d) HF
 - 34. In anti-Markovnikov addition, the mechanism is
 - a) Ionic
 - b) Free radical
 - c) Electrophilic
 - d) Nucleophilic
 - 35. Cold dilute KMnO₄ oxidises alkenes to
 - a) Dihalides
 - b) Glycols
 - c) Acids
 - d) Aldehydes
 - 36. The above reaction (Q35) is used as
 - a) Test for saturation
 - b) Test for unsaturation
 - c) Test for alcohol
 - d) Test for aldehyde
 - 37. Oxidation of but-2-ene with acidified KMnO₄ gives
 - a) Acetone
 - b) Acetic acid
 - c) Ethanol
 - d) CO₂
 - 38. Addition of ozone to alkenes forms
 - a) Peroxides
 - b) Ozonides
 - c) Alcohols
 - d) Ethers
 - 39. Ozonolysis of ethene gives
 - a) Methanal
 - b) Ethanal
 - c) Ethanol
 - d) Acetone
 - 40. The polymer formed from ethene is
 - a) Polyethylene
 - b) Polypropene

- c) PVC
- d) Teflon
- 41. Polymerisation of ethene occurs under
 - a) Low temperature
 - b) High temperature and pressure
 - c) Room temperature
 - d) No catalyst
- 42. Catalyst used in polymerisation of ethene is
 - a) Ni
 - b) AICI₃
 - c) Zeigler-Natta or peroxide
 - d) FeCl₃
- 43. Polypropylene is obtained from
 - a) Propene
 - b) Ethene
 - c) Benzene
 - d) Methane
- 44. Alkenes are more reactive than alkanes because
 - a) They are saturated
 - b) They contain π bond
 - c) They have σ bond only
 - d) They are aromatic
- 45. The π -bond electrons in alkenes make them
 - a) Electron-deficient
 - b) Electron-rich
 - c) Unreactive
 - d) Ionic
- 46. Electrophilic addition reactions involve attack by
 - a) Electron-rich reagents
 - b) Electron-deficient reagents
 - c) Neutral reagents
 - d) Bases
- 47. The reactivity order of hydrogen halides towards alkenes is
 - a) HCI > HBr > HI
 - b) HI > HBr > HCl
 - c) HBr > HCl > HI
 - d) HCl > HI > HBr
- 48. The reaction of ethene with cold, concentrated H₂SO4 gives
 - a) Ethanol
 - b) Ethyl hydrogen sulfate

- c) Diethyl ether
- d) Acetone
- 49. Alkenes on oxidation with hot, concentrated KMnO₄ undergo
 - a) Cleavage of double bond
 - b) Dehydrogenation
 - c) Dehydration
 - d) Isomerisation
- 50. Which reaction produces aldehydes or ketones from alkenes?
 - a) Polymerisation
 - b) Ozonolysis
 - c) Hydrogenation
 - d) Nitration

Answers – SET 2

1-b 2-b 3-b 4-b 5-b 6-a 7-b 8-b 9-c 10-b 11-b 12-c 13-b 14-a 15-b 16-b 17-a 18-b 19-b 20-a 21-c 22-a 23-b 24-c 25-a 26-c 27-b 28-b 29-a 30-b 31-b 32-b 33-c 34-b 35-b 36-b 37-b 38-b 39-a 40-a 41-b 42-c 43-a 44-b 45-b 46-b 47-b 48-b 49-a 50-b