SET 1 – GRAVITATION

(a) 9.8 m/s² (b) 9.8 km/s²

1. The gravitational constant (G) has dimensions:	
(a) $M^{-1}L^3T^{-2}$	
(b) ML ⁻² T ⁻¹	
(c) ML ² T ⁻²	
(d) M ⁻² L ³ T ⁻²	
2. The value of G was first determined by:	
(a) Newton	
(b) Cavendish	
(c) Galileo	
(d) Kepler	
2. The SI unit of gravitational constant is:	
3. The SI unit of gravitational constant is: (a) N·m/kg²	
(a) N·m²/kg²	
(c) J/kg ²	
(d) m³/kg·s²	
4. The force between two bodies is inversely proportional to:	
(a) square of distance	
(b) distance	
(c) cube of distance	
(d) mass of the bodies	
5. Gravitational force is always:	
(a) attractive	
(b) repulsive	
(c) neutral	
(d) both (a) and (b)	
6. Acceleration due to gravity (g) on Earth's surface is approximately:	

(c) 10 m/s ² (d) 8.9 m/s ²
7. The value of g decreases with:
(a) altitude
(b) depth
(c) rotation of Earth
(d) all of these
8. The acceleration due to gravity is maximum at:
(a) poles
(b) equator
(c) centre of Earth
(d) atmosphere
9. The acceleration due to gravity is minimum at:
(a) equator
(b) poles
(c) centre of Earth
(d) mountains
40 Ti 1 10
10. The value of G:
(a) is constant everywhere
(b) varies with location
(c) depends on medium
(d) depends on mass
11. Kepler's first law states that:
(a) planets move in elliptical orbits
(b) planets move in circular orbits
(c) planets move with uniform velocity
(d) area swept is constant
12. Kepler's second law is also known as:

(a) Law of areas(b) Law of orbits

(c) Law of periods (d) Law of gravitation	
13. Kepler's third law relates:	
(a) period and radius	
(b) velocity and radius	
(c) acceleration and mass	
(d) mass and gravity	
14. The time period of a satellite depends on:	
(a) radius of its orbit	
(b) its mass	
(c) both (a) and (b)	
(d) independent of both	
 15. The orbital velocity of a satellite is given by: (a) √(GM/R) (b) √(gR) (c) √(2GM/R) (d) √(GM/2R) 	
16. The escape velocity from Earth's surface is approximately:	
(a) 11.2 km/s	
(b) 9.8 km/s	
(c) 7.9 km/s	
(d) 8.2 km/s	
17. Escape velocity depends on:	
(a) mass and radius of planet	
(b) mass of satellite	
(c) both (a) and (b)	
(d) none	
18. For a body of mass <i>m</i> at Earth's surface, the gravitational potential energy is: (a) −GMm/R	

(b) GMm/R

(c) −GmR/M (d) −GRm/M	
19. The gravitational field intensity is define	d as:
(a) force per unit mass	4.50
(b) mass per unit force	
(c) energy per unit mass	
(d) work per unit distance	
20. The potential at infinity is taken as:	
(a) zero	
(b) maximum	
(c) minimum	
(d) infinite	
(a) 7.9 km/s (b) 8.9 km/s (c) 10 km/s (d) 11.2 km/s	
22. The time period of an artificial satellite of	close to Earth's surface is approximately:
(a) 84 minutes	,
(b) 60 minutes	
(c) 120 minutes	
(d) 45 minutes	
23. The height of geostationary satellite abo	ove Earth's surface is:
(a) 36,000 km	
(b) 42,200 km	
(c) 3,600 km	
(d) 6,400 km	
24. The time period of a geostationary sate	llite is:
(a) 24 hours	

(b) 12 hours

(c) 6 hours (d) 48 hours	
25. The energy required to launch a satellite depends on:	
(a) mass of satellite	
(b) height of orbit	
(c) both (a) and (b)	
(d) neither	
	* (
26. The gravitational potential at a point is negative because:	
(a) work is done against gravity	
(b) work is done by gravity	
(c) it is a scalar	
(d) it decreases with distance	
27. The conclusation due to gravity at the centre of Farth in	
27. The acceleration due to gravity at the centre of Earth is:	
(a) zero (b) maximum	
(c) infinite	
(d) equal to surface value	
(d) equal to surface value	
28. The escape velocity does not depend on:	
(a) mass of the body	
(b) radius of the planet	
(c) gravitational constant	
(d) density of planet	
29. If the mass of Earth were doubled and its radius halved, the value	of g would:
(a) increase four times	
(b) decrease four times	
(c) increase eight times	
(d) decrease eight times	
30. The force acting on a mass m at the Earth's surface is called:	
(a) weight	

(b) mass

(d) inertia	
31. The orbital velocity (v) of a satellite is:	
(a) √(GM/R)	
(b) GM/R ²	
(c) GMm/R ²	
(d) √(GR/M)	
32. The total energy of a satellite in circular orbit is:	
(a) -GMm/2R	
(b) GMm/2R	
(c) -GMm/R	
(d) GMm/R	
33. If radius of Earth increases but mass remains same, value of g will:(a) decrease(b) increase(c) remain same(d) become infinite	
34. A geostationary satellite appears:	
(a) stationary relative to Earth	
(b) moving east to west	
(c) moving west to east	
(d) moving randomly	
35. Kepler's laws are applicable to:	
(a) planets around the Sun	
(b) satellites around Earth	
(c) moons around planets	
(d) all of these	
00 Th	
36. The gravitational force between two objects is doubled if:(a) distance is halved	

(b) masses are doubled

(c) both (a) and (b) (d) none
37. Gravitational potential energy between two masses is:
(a) negative
(b) positive
(c) zero
(d) infinite
38. The value of g at poles is:
(a) maximum
(b) minimum
(c) zero
(d) same as equator
39. The value of g decreases with:
(a) height
(b) depth
(c) latitude
(d) all of these
40. The escape velocity on Moon is approximately:
(a) 2.4 km/s
(b) 11.2 km/s
(c) 7.9 km/s
(d) 5.8 km/s
41. The gravitational potential energy of a satellite is always:
(a) negative
(b) positive
(c) zero
(d) depends on mass
(-)
42. The orbital energy of a satellite is:
(a) −GMm/2R

(b) -GMm/R

43. If a body is thrown vertically upward with escape velocity, it will: (a) never return (b) come back (c) stop at max height (d) revolve around Earth 44. The work done in moving a mass from Earth to infinity is: (a) GMm/R (b) –GMm/R (c) zero (d) GMm/2R 45. Weightlessness is experienced when: (a) object is in free fall (b) object is stationary (c) g = 9.8 m/s² (d) g = maximum 46. The orbital velocity of Moon around Earth is about: (a) 1 km/s (b) 3 km/s (c) 10 km/s (d) 0.1 km/s 47. The value of g at a depth equal to Earth's radius/2 is: (a) g/2 (b) g/4 (c) g/8	(c) GMm/2R (d) GMm/R²
44. The work done in moving a mass from Earth to infinity is: (a) GMm/R (b) -GMm/R (c) zero (d) GMm/2R 45. Weightlessness is experienced when: (a) object is in free fall (b) object is stationary (c) g = 9.8 m/s² (d) g = maximum 46. The orbital velocity of Moon around Earth is about: (a) 1 km/s (b) 3 km/s (c) 10 km/s (d) 0.1 km/s 47. The value of g at a depth equal to Earth's radius/2 is: (a) g/2 (b) g/4 (c) g/8	(a) never return(b) come back(c) stop at max height
(a) GMm/R (b) -GMm/R (c) zero (d) GMm/2R 45. Weightlessness is experienced when: (a) object is in free fall (b) object is stationary (c) g = 9.8 m/s² (d) g = maximum 46. The orbital velocity of Moon around Earth is about: (a) 1 km/s (b) 3 km/s (c) 10 km/s (d) 0.1 km/s 47. The value of g at a depth equal to Earth's radius/2 is: (a) g/2 (b) g/4 (c) g/8	(d) Tevolve diodrid Editi
45. Weightlessness is experienced when: (a) object is in free fall (b) object is stationary (c) g = 9.8 m/s² (d) g = maximum 46. The orbital velocity of Moon around Earth is about: (a) 1 km/s (b) 3 km/s (c) 10 km/s (d) 0.1 km/s 47. The value of g at a depth equal to Earth's radius/2 is: (a) g/2 (b) g/4 (c) g/8	(a) GMm/R (b) -GMm/R
 (a) object is in free fall (b) object is stationary (c) g = 9.8 m/s² (d) g = maximum 46. The orbital velocity of Moon around Earth is about: (a) 1 km/s (b) 3 km/s (c) 10 km/s (d) 0.1 km/s 47. The value of g at a depth equal to Earth's radius/2 is: (a) g/2 (b) g/4 (c) g/8 	
(a) 1 km/s (b) 3 km/s (c) 10 km/s (d) 0.1 km/s 47. The value of g at a depth equal to Earth's radius/2 is: (a) g/2 (b) g/4 (c) g/8	 (a) object is in free fall (b) object is stationary (c) g = 9.8 m/s²
(a) g/2 (b) g/4 (c) g/8	(a) 1 km/s (b) 3 km/s (c) 10 km/s
(a) U	(a) g/2 (b) g/4

(a) constant(b) variable

- (c) infinite
- (d) zero
- **49.** The binding energy of a satellite is equal to:
- (a) GMm/2R
- (b) GMm/R
- (c) -GMm/R
- (d) GMm/4R
- **50.** Gravitational field lines:
- (a) never intersect
- (b) can intersect
- (c) depend on medium
- (d) are circular

Answers – SET 1

- 1 (a) 2 (b) 3 (b) 4 (a) 5 (a) 6 (a) 7 (d) 8 (a) 9 (a) 10 (a) 11 (a) 12 (a) 13 (a) 14 (a) 15 (a) 16 (a) 17 (a) 18 (a) 19 (a) 20 (a) 21 (a) 22 (a) 23 (a) 24 (a) 25 (c) 26 (b) 27 (a) 28 (a) 29 (a) 30 (a) 31 (a) 32 (a) 33 (a) 34 (a) 35 (d) 36 (c) 37 (a) 38 (a) 39 (d) 40 (a)
- 41 (a) 42 (a) 43 (a) 44 (a) 45 (a) 46 (a) 47 (a) 48 (a) 49 (a) 50 (a)