SET 2 -

- 1. Enthalpy is defined as
 - a) Total energy of the system
 - b) Heat content of the system
 - c) Internal energy of the surroundings
 - d) Potential energy only
- 2. Symbol for enthalpy is
 - a) E
 - b) H
 - c) Q
 - d) U
- 3. Relation between enthalpy and internal energy is
 - a) H = U + PV
 - b) H = U PV
 - c) H = PV U
 - d) H = U / PV
- 4. The unit of enthalpy is
 - a) J
 - b) Calorie
 - c) kJ mol⁻¹
 - d) All of these
- 5. Enthalpy is a
 - a) State function
 - b) Path function
 - c) Extensive property
 - d) Both (a) and (c)
- 6. The heat change at constant pressure represents
 - a) Internal energy change
 - b) Enthalpy change
 - c) Free energy change
 - d) Work done
- 7. For an ideal gas, $\Delta H = \Delta U + \Delta nRT$. Here, Δn is
 - a) Number of moles of solids
 - b) Number of moles of gases
 - c) Total number of moles
 - d) None
- 8. When $\Delta n = 0$, then
 - a) $\Delta H = \Delta U$

	b) $\Delta H = \Delta U + RT$
	c) $\Delta H = \Delta U - RT$
	d) $\Delta H = 0$
	,
9.	The enthalpy of an element in its standard state is –
	a) Zero
	b) One
	c) Negative
	d) Positive
10	The enthalou of formation is
10.	The enthalpy of formation is – a) Heat change when one mole of a compound is formed from its elements
	b) Heat change during decomposition
	c) Heat absorbed during melting
	d) Heat released during combustion
11.	The enthalpy of combustion is always –
	a) Positive
	b) Negative
	c) Zero
	d) Infinite
12	Enthalpy of neutralization is –
12.	a) Heat change when one mole of water is formed
	b) Heat change when an acid reacts with a base
	c) Both (a) and (b)
	d) None
13.	The standard enthalpy of formation of H₂(g) is –
	a) 0
	b) 1
	c) 2
	d) 3
14	The enthalpy of combustion of CH ₄ is –
	a) +890 kJ mol ⁻¹
	b) –890 kJ mol ⁻¹
	c) +44 kJ mol ⁻¹

- 15. Exothermic reactions have
 - a) Positive ΔH

d) -44 kJ mol⁻¹

- b) Negative ΔH
- c) Zero ΔH
- d) Variable ΔH

- 16. Endothermic reactions have
 - a) Positive ΔH
 - b) Negative ΔH
 - c) Zero ΔH
 - d) None
- 17. The heat required to melt 1 mole of solid at constant pressure is
 - a) Enthalpy of vaporization
 - b) Enthalpy of fusion
 - c) Enthalpy of sublimation
 - d) None
- 18. The heat required to change 1 mole of liquid into vapor is
 - a) Enthalpy of vaporization
 - b) Enthalpy of fusion
 - c) Enthalpy of combustion
 - d) Enthalpy of formation
- 19. The enthalpy of sublimation is equal to
 - a) Enthalpy of fusion + enthalpy of vaporization
 - b) Enthalpy of fusion enthalpy of vaporization
 - c) Enthalpy of combustion
 - d) None
- 20. For exothermic reactions
 - a) Heat is absorbed
 - b) Heat is released
 - c) No heat change
 - d) Heat fluctuates
- 21. Enthalpy of reaction depends on
 - a) Nature of reactants and products
 - b) Physical state
 - c) Temperature and pressure
 - d) All of these
- 22. The enthalpy of neutralization for strong acid and strong base is approximately
 - a) -13.7 kJ mol⁻¹
 - b) -37 kJ mol⁻¹
 - c) -57.1 kJ mol⁻¹
 - d) -100 kJ mol⁻¹
- 23. The enthalpy of solution is
 - a) Heat change when solute dissolves in solvent
 - b) Heat absorbed on evaporation
 - c) Heat released on cooling

- d) None
- 24. If heat is evolved, the process is
 - a) Exothermic
 - b) Endothermic
 - c) Isothermal
 - d) Adiabatic
- 25. If $\Delta H = +40 \text{ kJ mol}^{-1}$, then reaction is
 - a) Exothermic
 - b) Endothermic
 - c) Adiabatic
 - d) Isothermal
- 26. For combustion of carbon:

$$C(s) + O_2(g) \rightarrow CO_2(g), \Delta H = -393.5 \text{ kJ mol}^{-1}$$

This means –

- a) 393.5 kJ heat absorbed
- b) 393.5 kJ heat released
- c) No heat change
- d) None
- 27. Hess's law is based on
 - a) Law of conservation of mass
 - b) Law of conservation of energy
 - c) Law of constant proportion
 - d) None
- 28. Hess's law states that
 - a) Total enthalpy change is independent of path
 - b) Depends on steps of reaction
 - c) Depends on catalyst
 - d) None
- 29. Hess's law is useful for
 - a) Indirect determination of enthalpy changes
 - b) Measuring work done
 - c) Calculating pressure
 - d) None
- 30. If a reaction takes place in two or more steps, total enthalpy change
 - a) Is sum of enthalpy changes of each step
 - b) Depends on order
 - c) Cannot be calculated
 - d) None

- 31. Enthalpy of a reaction is equal to
 - a) Enthalpy of products enthalpy of reactants
 - b) Reactants products
 - c) Sum of reactants
 - d) Sum of products
- 32. Which of the following is an example of exothermic reaction?
 - a) Combustion of methane
 - b) Electrolysis of water
 - c) Photosynthesis
 - d) Dissolution of ammonium chloride
- 33. Which of the following is an endothermic reaction?
 - a) Formation of H₂O
 - b) Combustion of C₂H₆
 - c) Photosynthesis
 - d) Neutralization
- 34. Heat change accompanying dissolution of NH₄Cl in water is
 - a) Positive
 - b) Negative
 - c) Zero
 - d) Constant
- 35. In a calorimeter, heat lost by hot substance = heat gained by cold substance. This follows
 - a) Hess's law
 - b) First law of thermodynamics
 - c) Second law
 - d) None
- 36. In an endothermic reaction, energy of products is
 - a) Greater than reactants
 - b) Less than reactants
 - c) Equal
 - d) Zero
- 37. In an exothermic reaction, energy of products is
 - a) Greater than reactants
 - b) Less than reactants
 - c) Equal
 - d) None
- 38. The enthalpy of atomization is
 - a) Heat change when 1 mole of atoms formed from element
 - b) Heat absorbed when molecule breaks into atoms
 - c) Both (a) and (b)

- d) None
- 39. The enthalpy of bond dissociation is
 - a) Heat absorbed when 1 mole of bonds is broken
 - b) Heat released when bond formed
 - c) Both (a) and (b)
 - d) None
- 40. Enthalpy of bond formation is always
 - a) Positive
 - b) Negative
 - c) Zero
 - d) Infinite
- 41. When one mole of ionic compound forms from gaseous ions, the enthalpy is
 - a) Lattice enthalpy
 - b) Ionization enthalpy
 - c) Electron gain enthalpy
 - d) Sublimation enthalpy
- 42. When a gaseous atom loses an electron, the enthalpy change is
 - a) Ionization enthalpy
 - b) Electron gain enthalpy
 - c) Lattice energy
 - d) None
- 43. When a gaseous atom gains an electron, the enthalpy change is
 - a) Electron gain enthalpy
 - b) Ionization enthalpy
 - c) Lattice enthalpy
 - d) Sublimation energy
- 44. Heat change accompanying formation of gaseous ions from solid metal and gaseous nonmetal is called
 - a) Born-Haber process
 - b) Ionization process
 - c) Enthalpy of solution
 - d) None
- 45. Hess's law helps in calculation of
 - a) Lattice enthalpy
 - b) Enthalpy of formation
 - c) Enthalpy of combustion
 - d) All of these
- 46. The enthalpy of formation of CO₂ from C and O₂ is
 - a) +393.5 kJ mol⁻¹

- b) -393.5 kJ mol⁻¹
- c) +283 kJ mol⁻¹
- d) -283 kJ mol⁻¹
- 47. The standard enthalpy of formation of H₂O(I) is
 - a) -285.8 kJ mol-1
 - b) +285.8 kJ mol⁻¹
 - c) 0
 - d) +100 kJ mol⁻¹
- 48. For an exothermic reaction, ΔH is
 - a) Negative
 - b) Positive
 - c) Zero
 - d) None
- 49. Enthalpy is an example of
 - a) Extensive property
 - b) Intensive property
 - c) Both
 - d) None
- 50. Hess's law can be used to calculate
 - a) Enthalpy of indirect reactions
 - b) Free energy
 - c) Entropy
 - d) None

ANSWER KEY - SET 2

```
1-b 2-b 3-a 4-c 5-d 6-b 7-b 8-a 9-a 10-a
11-b 12-c 13-a 14-b 15-b 16-a 17-b 18-a 19-a 20-b
21-d 22-c 23-a 24-a 25-b 26-b 27-b 28-a 29-a 30-a
31-a 32-a 33-c 34-a 35-b 36-a 37-b 38-c 39-a 40-b
41-a 42-a 43-a 44-a 45-d 46-b 47-a 48-a 49-a 50-a
```