

GROUP -A (समूह -A)

MCQ Type Questions/बहुविकल्पीय प्रश्न

1. Microorganisms are found in
 (a) Soil (b) Air
 (c) Polluted water (d) All of the above

1. सूक्ष्म जीव पाए जाते हैं।
 (a) मृदा में (b) हवा में
 (c) प्रदूषित जल में (d) उपरोक्त सभी में,

2. Probiotics are
 (a) Cancer-promoting microbes
 (b) New types of food allergies
 (c) Live microbial food supplements
 (d) Safe antibiotics

2. प्रोबायोटिक्स है -
 (a) कैंसर को प्रोत्साहित करने वाले सूक्ष्मजीव
 (b) नए प्रकार के भोजन एलर्जी
 (c) जीवित सूक्ष्मजीवी भोजन पूरक
 (d) सुरक्षित एंटीबायोटिक

3. Chemicals produced by certain micro-organisms which can kill other microorganisms or inhibit their growth are called.
 (a) Antiseptics (b) Anti acids
 (c) Antibiotics (d) All of the above

3. कुछ सूक्ष्म जीवों से उत्पन्न रसायन जो अन्य सूक्ष्मजीवों को मार सकते हैं या उनकी वृद्धि को अवरुद्ध कर सकते हैं वह कहलाते हैं।
 (a) एंटीसेप्टिक्स (b) एंटी एसिड
 (c) एंटीबायोटिक्स (d) उपरोक्त सभी

4. Which of these antibiotics is used to cure throat infection?
 (a) Neomycin (b) Poly Mixes
 (c) Tetracycline (d) Viridin

4. इनमें से कौन से एंटीबायोटिक का उपयोग गले के संक्रमण को ठीक करने में होता है?
 (a) न्योमाइसिन (b) पॉली मिक्सेस
 (c) टेट्रासाइक्लिन (d) विरिडीन

5. It is organic fertilizer.
 (a) Some bacteria and cyanobacteria
 (b) Fertilizer made by plowing berseem
 (c) Fertilizer made by decomposition of dead organisms
 (d) Fertilizer made by mixing animal dung with crop residues.

5. जैव उर्वरक है।
 (a) कुछ बैक्टीरिया और साइनोबैक्टीरिया
 (b) बरसीम जोतने से बने उर्वरक
 (c) मृत जीवों के अपघटन से बने उर्वरक
 (d) पशुओं के गोबर को फसलों के अवशेषों से मिलाने पर बना उर्वरक।

6. Which of the following is not a nitrogen fixing organism?
 (a) Anabeana (b) Nostoc
 (c) Azotobacter (d) Paramecium

6. निम्न में से कौन एक नाइट्रोजन स्थिरीकरण जीव नहीं है?
 (a) एनाबिना (b) नॉस्टॉक
 (c) एजोटोबैक्टर (d) पैरामीशियम

7. The BOD of waste water is tested by measuring the amount of:
 (a) Total organic matter
 (b) newly formed matter
 (c) consumption of oxygen
 (d) release of oxygen

7. वर्ध जल की BOD का परीक्षण निम्न की मात्रा का मापन करके किया जाता है।
 (a) कुल कार्बनिक पदार्थ (b) नवगठित पदार्थ
 (c) ऑक्सीजन की खपत (d) ऑक्सीजन का निकलना

8. Which of the following is a commercial agent for lowering blood cholesterol?
 (a) Lipase (b) Amylase
 (c) Cyclosporine (d) Statin

8. निम्न में से रुधिर कोलेस्ट्रोल कम करने वाला व्यवसायिक कारक क्या है?
 (a) लाइपेज (b) एमिलेज
 (c) साइक्लोसपोरिन (d) स्टैटिन

9. The conversion of milk into curd increases its nutritional value due to
 (a) Vitamin B 12 (b) Vitamin A
 (c) Vitamin B (d) Vitamin E

9. दूध के दही में रूपांतरण से इसकी अच्छी पोषक क्षमता किसकी वृद्धि के कारण होती है?
 (a) विटामिन B12 (b) विटामिन A
 (c) विटामिन B (d) विटामिन E

10. Which is the algae that can be used as food for humans?
 (a) Ulothrix (b) Chlorella
 (c) Spirogyra (d) Polysiphonia

10. वह कौन सा शैवाल है जिसे मानव के लिए खाद्य के रूप में नियोजित किया जा सकता है?

(a) यूलोथ्रिक्स (b) क्लोरेला
(c) स्पाइरोगाइरा (d) पॉलीसिफोनिया

11. What is penicillin obtained from?

(a) *Aspergillus fumigatus* (b) *Penicillium notatum*
(c) *Penicillium griseofulvum* (d) *Streptomyces precis*

12. पेनिसिलीन किससे प्राप्त होती है?

(a) एस्परजिलस फ्युमिगेटस (b) पेनीसिलियम नोटेटम
(c) पेनिसिलियम ग्रिसोफ्लबम (d) स्ट्रेटोमाइसीज प्रेसियस

13. Fertilizers which are used to enrich the nutritive quality of the soil are called.

(a) Weed Control Agent (b) Bio Fertilizer
(c) Synthetic Fertilizer (d) Natural Fertilizer

14. उर्वरक जिनका उपयोग मूदा की पोषक गुणवत्ता को प्रचुर करने में किया जाता है कहलाते हैं।

(a) जय नियंत्रक कारक (b) जैव उर्वरक
(c) संश्लेषित उर्वरक (d) प्राकृतिक उर्वरक

15. Cyanobacteria are

(a) Heterotrophs (b) Chemotrophs
(c) Autotrophic (d) Organotrophs

16. साइनोबैक्टीरिया हैं।

(a) विषमपोषी (b) रसायन पोषी
(c) स्वपोषी (d) ऑर्गेनोट्रॉफस

17. There is a symbiotic relationship between fungi and the roots of higher plants.

(a) Lichen (b) Mycorrhiza
(c) Biofertilizer (d) Biocontrol agent

18. कंगी और उच्च पादपों की जड़ों के बीच सहजीवी संबंध है।

(a) लाइकेन (b) माइकोराइजा
(c) जैव उर्वरक (d) जैव नियंत्रण कारक

19. Which is not included in organic agriculture?

(a) Green Manure (b) Chemical Fertilizer
(c) Farm Manure (d) Compost

20. कार्बनिक कृषि में शामिल नहीं है।

(a) हरी खाद (b) रासायनिक उर्वरक
(c) खेतों की खाद (d) कंपोस्ट

GROUP-B (समूह -ब)

Very Short Answer Type Question/अति लघु उत्तरीय प्रश्न

1. Which bacteria are called lactic acid bacteria?

Ans. Lactobacillus bacteria are called lactic acid bacteria.

1. किस बैक्टीरिया को लैक्टिक एसिड बैक्टीरिया कहते हैं?

उत्तर - लैक्टोबैसिलस बैक्टीरिया को लैक्टिक एसिड बैक्टीरिया कहते हैं।

2. Name the yeast used in making bread from flour.

Ans. The name of the yeast used in making bread from flour is *Saccharomyces cerevisiae*.

2. आटे से ब्रेड बनाने में ईस्ट का उपयोग किया जाता है उसका नाम लिखें।

उत्तर - आटा से ब्रेड बनाने में जिस यीस्ट उपयोग किया जाता है उसका नाम है -सैकरोमाइसीज सैरीवीसी।

3. In the process of fermentation, yeast and bacteria break down carbohydrates into what substances?

Ans. In the process of fermentation, yeast and bacteria break down carbohydrates into ethanol and carbon dioxide.

3. किण्वन की प्रक्रिया में यीस्ट एवं बैक्टीरिया कार्बोहाइड्रेट को किन पदार्थों में तोड़ देते हैं?

उत्तर - किण्वन की प्रक्रिया में यीस्ट एवं बैक्टीरिया कार्बोहाइड्रेट को एथेनॉल एवं कार्बन डाइऑक्साइड में तोड़ देते हैं।

4. What is a group of bacteria joined together by fungal filaments and slime to form a mesh-like structure?

Ans. The sentence of a group of bacteria is linked by filaments online to form a lattice-like structure, it is called flocs.

4. बैक्टीरिया के समूह कवकिय तंतुओं और स्लाइम द्वारा जुड़कर एक जाली जैसी संरचना बनाते हैं उसे क्या कहते हैं?

उत्तर - बैक्टीरिया के समूह कवकिय तंतुओं और स्लाइम द्वारा जुड़कर एक जाली जैसी संरचना बनाते हैं उसे उर्णक कहते हैं।

5. Write the names of some bacteria that produce methane.

Ans. The names of some bacteria that produce methane are - *Methanobacterium*, *Methanococcus*.

5. मिथेन उत्पन्न करने वाले कुछ जीवाणुओं के नाम लिखें।

उत्तर - मिथेन उत्पन्न करने वाले कुछ जीवाणुओं के नाम हैं -मिथेनोबैक्टीरियम, मिथेनोकोकस।

6. What is the most active nitrogen fixer in rice fields in India?

Ans. *Olosir fertilessima* is the most active nitrogen fixer in rice fields in India.

6. भारत में चावल के खेतों में सबसे अधिक सक्रिय नाइट्रोजन स्थिरीकारक क्या है?

उत्तर - ओलोसिर फरटीलिसिमा भारत में चावल के खेतों में सबसे अधिक सक्रिय नाइट्रोजन स्थिरीकारक है।

7. Which is used for the control of aphid (plant pest).

Ans. Ladybird beetle *coccinella* is used for the control of aphid.

7. एफिड (पादप पीड़क) के नियंत्रण के लिए किसका इस्तेमाल किया जाता है।

उत्तर - एफिड (पादप पीड़ा) के नियंत्रण के लिए लोडीबर्ड बीटल कोक्सीनेला का इस्तेमाल किया जाता है।

Answer

1-d	6-d	11-b
2-c	7-c	12-b
3-a	8-d	13-c
4-b	9-a	14-b
5-a	10-b	15-b

8. Name an alcoholic substance that is produced without distillation.

Ans. Wine is an alcoholic substance that is produced without distillation.

8. एक ऐसे अल्कोहलिक पदार्थ का नाम बताएं जो बगैर आसवन के उत्पन्न होता है।

उत्तर - वाइन एक ऐसा अल्कोहलिक पदार्थ है जो बगैर आसवन के उत्पन्न होता है।

9. Write the names of three microorganisms used in human welfare.

Ans. (i) Lactobacillus (bacterium) - in making curd from milk.
(ii) Saccharomyces cerevisiae (yeast) - Bread industry
(iii) Aspergillus niger (fungus) - Citric acid production.

9. मानव कल्याण में उपयोग में आने वाले तीन सूक्ष्मजीवों के नाम लिखें।

उत्तर - (i) लैक्टोबैक्टीरियम (जीवाणु) - दूध से दही बनने में।
(ii) सेक्रोमाइसीज सेरेविसी (रीस्ट) - ब्रेड उद्योग
(iii) एस्पर्जिलस नाइगर (कवक) - सिट्रिक अम्ल उत्पादन

GROUP -C (समूह -स)

Short Answer Type Question / लघु उत्तरीय प्रश्न

1. Prove by giving an example that microorganisms expel gas during metabolism.

Ans. The loose dough made of lentils and rice, which is used to make food like 'Dosa' and 'Idli', is fermented by bacteria. The puffy appearance of this dough is due to the production of CO_2 gas.

1. उपापचय के दौरान सूक्ष्मजीव गैस का निष्कासन करते हैं एक उदाहरण द्वारा सिद्ध कीजिए।

उत्तर - दाल-चावल का बना ढीला-ढाला आटा जिसका प्रयोग 'दोसा' तथा 'इडली' जैसे आहार को बनाने में किया जाता है, बैक्टीरिया द्वारा किण्वित होता है। इस आटे की फूली उभरी शक्ति CO_2 गैस के उत्पादन के कारण होती है।

2. Give some beneficial uses of which food contains lactic acid bacteria.

Ans. Lactic acid bacteria are found in curd. They have the following beneficial uses: (i) Lactic acid bacteria convert dietary milk lactose into lactic acid. It converts milk into curd by coagulating milk protein and casein. (ii) The nutritional value of curd is more than that of milk.

2. किस भोजन में लैक्टिक एसिड बैक्टीरिया मिलते हैं इसके कुछ लाभप्रद उपयोग बताएं।

उत्तर - दही में लैक्टिक एसिड बैक्टीरिया मिलते हैं। इनके निप्रलिखित उपयोग हैं: (i) लैक्टिक एसिड बैक्टीरिया आहार दृष्टि के लैक्टोस को लैक्टिक अम्ल में बदल देते हैं। यह दूध के प्रोटीन एवं कैसीन को जमा कर दूध को दही में बदलता है। (ii) दही का पोषण क्षमता दूध से अधिक होता है।

3. How do microorganisms play their role in the control of diseases caused by harmful bacteria?

Ans. Microorganisms play an important role in the control of diseases caused by harmful organisms. Antibiotics are a type of chemical substance produced by some microorganisms. These slow the growth of other disease-causing harmful microorganisms or can kill them. Penicillin was the first antibiotic. This antibiotic was widely used in the treatment of wounded American soldiers in World War II.

3. हानिप्रद जीवाणु द्वारा उत्पन्न होने वाले रोगों के नियंत्रण में किस प्रकार से सूक्ष्मजीव अपनी भूमिका निभाते हैं?

उत्तर - हानिप्रद जीवों द्वारा उत्पन्न करने वाले रोगों के नियंत्रण में सूक्ष्मजीव महत्वपूर्ण भूमिका निभाते हैं प्रति-जैविक एक प्रकार के रासायनिक पदार्थ हैं जिसका निर्माण कुछ सूक्ष्मजीवियों द्वारा होता है। यह अन्य रोग उत्पन्न करने वाले हानिकारक सूक्ष्मजीवों की वृद्धि को मंद करते हैं अथवा उन्हें मार सकते हैं पेनीसिलीन सबसे पहला एंटीबायोटिक था। इस एंटीबायोटिक का प्रयोग दूसरे विश्व युद्ध में घायल अमेरिकन सिपाहियों के उपचार में व्यापक रूप से किया गया।

4. What do you understand by sewage, how is it harmful for us?

Ans. Every day a huge amount of waste water is generated in the cities and towns. The major component of this waste water is human excreta. This waste water in the city is called sewage. Sewage is harmful to us in many ways-

(i) Sewage contains a large amount of microorganisms and organic substances which are the causes of disease.
(ii) Sewage lacks oxygen so organic matter does not decompose and pollutes the atmosphere.

4. वाहित मल से आप क्या समझते हैं यह हमारे लिए किस प्रकार हानि प्रद है?

उत्तर - प्रतिदिन नगर एवं शहरों में व्यर्थ जल की बहुत बड़ी मात्रा जनित होती है। इस व्यर्थ जल का प्रमुख घटक मनुष्य का मल मूत्र है। नगर में इस व्यर्थ जल को ही वाहित मल कहते हैं। वाहित मल हमारे लिए कई तरह से हानि प्रद है-

(i) वाहित मल में बड़ी मात्रा में सूक्ष्मजीव तथा कार्बनिक पदार्थ पाए जाते हैं जो रोग के कारक होते हैं।
(ii) वाहित मल में ऑक्सीजन की कमी होती है इसलिए कार्बनिक पदार्थों का विघटन नहीं होता है और यह वातावरण को प्रदूषित करता है।

5. Microorganisms can also be used as sources of energy, if so, consider how.

Ans. Yes, microorganisms can also be used as sources of energy. Biogas is a mixture of gases that is produced by the activity of microorganisms. During growth and metabolism, microorganisms produce a variety of gaseous products. Such as methane, hydrogen sulphide and CO_2 , these gases form biogas. Since it is flammable, it can be used as a source of energy.

5. सूक्ष्मजीवों का प्रयोग ऊर्जा के स्रोतों के रूप में भी किया जा सकता है यदि हां तो किस प्रकार इस पर विचार करें।

उत्तर - हाँ, सूक्ष्मजीवों का प्रयोग ऊर्जा के स्रोतों के रूप में भी किया जा सकता है। बायोगैस एक प्रकार से गैसों का मिश्रण है जो सूक्ष्मजीवों के सक्रियता द्वारा उत्पन्न होती है। वृद्धि तथा उपापचय के दौरान सूक्ष्मजीव विभिन्न किस्मों के गैसीय उत्पाद उत्पन्न करते हैं। जैसे- मीथेन, हाइड्रोजन, सल्फाइड तथा CO_2 , ये गैसें बायोगैस का निर्माण करती हैं। चूँकि ये ज्वलनशील होती हैं, इस कारण इनका प्रयोग ऊर्जा के स्रोत के रूप में किया जा सकता है।

6. Name any two species of fungi, which are used in the production of antibiotics.

Ans. The names of two common species which are used as antibiotics-

(i) Penicillium notatum
(ii) Streptomycin

6. किन्हीं दो कवक प्रजातियों के नाम लिखिए, जिनका प्रयोग प्रतिजैविकों (एंटीबायोटिक्स) के उत्पादन में किया जाता है।

उत्तर - दो कवर प्रजातियों के नाम जिनका प्रयोग प्रतिजैविक के रूप में किया जाता है-

- पेनिसिलियम नोटैटम
- स्ट्रेप्टोमाइसिन..

GROUP-D (समूह -द)

Long Answer Type Questions/ दीर्घ उत्तरीय प्रश्न

1. What are the main differences found between primary and secondary sewage treatment?

Ans. Sewage treatment is done in sewage treatment plant so that it can become pollution free. This treatment is done in two stages -

First Treatment - In first treatment, mainly physical actions to large and small particles; For example, it is separated by sedimentation, filtration, flotation etc. First of all the floating debris is removed by filtration. After this, the grit, soil and small particles are separated by sedimentation.

Secondary treatment - Microorganisms are used in secondary treatment. For example, an oxidation pool is a shallow reservoir in which sewage is collected. Due to the high organic matter in it, good growth of algae and bacteria starts.

The bacteria decompose and the carbon dioxide produced by the algae is used for photosynthesis. The oxygen released in photosynthesis protects the water from contamination. Thus, oxidation pools are an example of symbiosis between algae and bacteria.

1. प्राथमिक तथा द्वितीयक वाहित मल उपचार के बीच पाए जाने वाले मुख्य अन्तर कौन-से हैं?

उत्तर - वाहित मल का उपचार वाहित मल संयन्त्र में किया जाता है जिससे यह प्रदूषण मुक्त हो सके। यह उपचार दो चरणों में सम्पन्न होता है - प्राथमिक उपचार - प्राथमिक उपचार में मुख्यतः बड़े-छोटे कणों को भौतिक क्रियाओं; जैसे- अवसादन, नियंदन, प्लवन आदि द्वारा अलग किया जाता है। सबसे पहले तैरते हुए कूड़े-करकट को नियंदन द्वारा हटा दिया जाता है। इसके बाद ग्रिट (grit) मृदा तथा छोटे कणों को अवसादन द्वारा पृथक किया जाता है।

द्वितीयक उपचार - द्वितीयक उपचार में सूक्ष्मजीवधारियों का उपयोग किया जाता है। जैसे-ऑक्सीकरण ताल एक उथला जलाशय होता है जिसमें वाहित मल एकत्रित किया जाता है। इसमें कार्बनिक पदार्थ अधिक होने के कारण शैवाल और जीवाणुओं की अच्छी वृद्धि होने लगती है।

जीवाणु अपघटन करते हैं और शैवाल उनसे उत्पन्न कार्बन डाइ ऑक्साइड का प्रकाश संश्लेषण में उपयोग करते हैं। प्रकाश संश्लेषण में विमोचित ऑक्सीजन जल को दूषित होने से बचाती है। इस प्रकार ऑक्सीकरण ताल, शैवाल और जीवाणुओं के बीच सहजीविता का उदाहरण है।

2. Microorganisms can also be used to reduce the use of chemical fertilizers and pesticides. How will it be accomplished? Explain.

Ans. Biocontrol - Biocontrol is the use of biological methods for the control of plant diseases and pests. In modern

society, these problems are controlled with the help of increasing use of chemicals, insecticides and pesticides. These chemicals are extremely toxic and harmful to humans and animals. Toxic chemicals enter the body of living beings through the food chain. They also pollute the environment.

This pollution can be avoided by using organic fertilizers. The main sources of biofertilizers are bacteria, fungi and cyanobacteria. The glands present on the roots of leguminous plants are formed by the symbiotic association of Rhizobium bacteria. These bacteria fix atmospheric nitrogen and convert it into organic form. Other free-living bacteria such as Azospirillum and Azotobacter also increase the amount of nitrogen content in the soil by fixing atmospheric nitrogen. Thus we can say that Microorganisms can also be used to reduce the use of chemical fertilizers and pesticides.

2. सूक्ष्मजीवों का प्रयोग रसायन उर्वरकों तथा पीड़कनाशियों के प्रयोग को कम करने के लिए भी किया जा सकता है। यह किस प्रकार सम्पन्न होगा? व्याख्या कीजिए।

उत्तर - पादप रोगों तथा पीड़कों के नियन्त्रण के लिए जैव वैज्ञानिक विधि का प्रयोग ही जैव नियन्त्रण है। आधुनिक समाज में ये समस्याएँ रसायनों, कोटनाशियों तथा पीड़कनाशियों के बढ़ते हुए प्रयोगों की सहायता से नियन्त्रित की जाती हैं। ये रसायन मनुष्यों तथा जीव-जन्तुओं के लिए अत्यन्त ही विपैले तथा हानिकारक होते हैं। विषाक्त रसायन खाद्य श्रृंखला के माध्यम से जीवधारियों के शरीर में पहुंचते हैं। ये पर्यावरण को भी प्रदूषित करते हैं।

जैव उर्वरकों का प्रयोग करके इस प्रदूषण से बचा जा सकता है। जैव उर्वरकों का मुख्य स्रोत जीवाणु, कवक तथा सायनोबैक्टीरिया होते हैं। लोगूमिनस पादपों की जड़ों पर उपस्थित ग्रंथियों का निर्माण राइजोबियम जीवाणु के सहजीवी सम्बन्ध द्वारा होता है। ये जीवाणु वायुमण्डलीय नाइट्रोजन को स्थिरीकृत कर कार्बनिक रूप में परिवर्तित करते हैं। मृदा में मुक्तावस्था में रहने वाले अन्य जीवाणु जैसे-एजोस्पाइरिलम तथा एजोटोबैक्टर भी वायुमण्डलीय नाइट्रोजन को स्थिर कर मृदा में नाइट्रोजन अवयव की मात्रा को बढ़ाते हैं। इस प्रकार हम कह सकते हैं कि सूक्ष्म जीवों का प्रयोग रसायन उर्वरकों और पीड़कनाशियों के प्रयोग को कम करने के लिए भी किया जा सकता है।

3. Find out the role of microorganisms in the following and discuss them with your teacher - Single Cell Protein (SCP), Soil.

Ans. **Single cell proteins** - Algae like Spirulina, Chlorella and Synadesmus and fungi like yeast Saccharomyces, Torulopsis and Candida are being used as single cell proteins.

Soil - It is the only habitat in which different types of microorganisms and animals are present and provide mechanical support and nutrients to higher plants, on which human civilization is based. Rhizosphere microorganisms have a beneficial effect on plant development. Reaction by microorganisms in the rhizosphere results in formation of CO₂ and organic acids which dissolve inorganic nutrients in the plant. Some rhizosphere microorganisms also produce growth stimulants. Bacteria, Fungi, Cyanobacteria etc. Biofertilizers Nutrients of Soil enhance the quality.

3. निम्नलिखित में सूक्ष्मजीवियों की भूमिका का पता लगाएँ तथा अपने अध्यापक से इनके विषय में विचार-विमर्श करें -एकल कोशिका प्रोटीन (SCP), मृदा।

उत्तर - एकल कोशिका प्रोटीन - शैवाल जैसे- स्पाइरलिना, क्लोरेला तथा सिनेडेस्मस एवं कवक जैसे- यीस्ट सैक्रोमाइसीटी, टॉर्लाप्सिस तथा कैंडिडा का उपयोग एकल कोशिका प्रोटीन के रूप में किया जा रहा है।

मृदा - यह एक अकेला निवास स्थल है जिसमें विभिन्न प्रकार के सूक्ष्मजीव तथा प्राणिजात उपस्थित रहते हैं और उच्च पादपों को यांत्रिक सहायता एवं पोषक तत्व प्रदान करते हैं, जिस पर मनुष्य की सभ्यता आधारित है। पौधे के विकास पर राइजोस्फीयर सूक्ष्मजीवों का लाभदायक प्रभाव पड़ता है। राइजोस्फीयर में सूक्ष्मजीवों द्वारा प्रतिक्रिया के फलस्वरूप CO_2 तथा कार्बनिक अम्ल का निर्माण होता है जो पौधे में अकार्बनिक पोषकों को घुलाते हैं। कुछ राइजोस्फीयर सूक्ष्मजीव वृद्धि उत्तेजक पदार्थ भी उत्पादित करते हैं। जीवाणु, कवक, सायनोबैक्टीरिया आदि जैव उर्वरक मृदा की पोषक गुणवत्ता को बढ़ाते हैं।

4. I Arrange the following in decreasing order according to their importance towards human social welfare; Write your answer with reasons keeping the important substance first- Biogas, Citric Acid, Penicillin and Curd

Ans. Penicillin - It is an antibiotic. It is used to treat many bacterial-borne diseases; For example, it is used in the treatment of syphilis, arthritis, diphtheria, lung infection, etc.

Biogas - It is used for cooking and generating light. The slurry of cow dung used after the production of cow dung gas is used as a fertilizer.

Citric Acid - It is used as a preservative in many food items. Citric acid is produced by a fungus called Aspergillus niger.

Curd - It is a milk product which we use on a daily basis. Lactic acid bacteria convert milk into curd.

4. निम्नलिखित को घटते क्रम में मानव समाज कल्पाण के प्रति उनके महत्व के अनुसार संयोजित करें; महत्वपूर्ण पदार्थ को पहले रखते हुए कारणों सहित अपना उत्तर लिखें- बायोगैस, सिट्रिक एसिड, पेनिसिलिन तथा दही।

उत्तर - पेनिसिलिन - यह एक प्रतिजैविक है। इसका उपयोग बहुत-से जीवाणु-जनित रोगों; जैसे- सिफलिस, गठिया, डिप्सीरिया, फेफड़े का संक्रमण आदि के उपचार में किया जाता है।

बायोगैस - इसका उपयोग खाना बनाने एवं प्रकाश पैदा करने में किया जाता है। गोबर गैस निर्माण के उपरान्त उपयोग की गई गोबर की स्लरी का प्रयोग उर्वरक के रूप में किया जाता है।

सिट्रिक एसिड - इसका उपयोग बहुत-से भोज्य पदार्थों के परिरक्षण के रूप में किया जाता है। सिट्रिक अम्ल का उत्पादन ऐस्परजिलस नाइजर नामक कवक द्वारा किया जाता है।

दही - यह एक दुध उत्पाद है जिसका उपयोग हम प्रतिदिन करते हैं। लैक्टिक एसिड बैक्टीरिया दूध को दही में परिवर्तित कर देते हैं।

5. How do bio-fertilizers increase soil fertility?

Ans. Various types of organisms are used to manufacture bio-fertilizers; For example, blue-green algae or cyanobacteria are caused by bacteria and fungi. several genera of cyanobacteria; For example, Nostoc, Anabaena,

Tolyphothrix etc. take nitrogen gas from the atmosphere and convert it into nitrogenous compounds. In these, a special cell called heterocyst is found, which plays a major role in nitrogen-fixation and increases the fertility of the soil.symbiotic bacteria; For example, rhizobium forms glands in the roots of plants of the pea family and converts nitrogen gas from the atmosphere into nitrogenous compounds. This increases the nutritional power of the soilfree living bacteria found in the soil; For example, Azotobacter, Azospirillum also stabilize the nitrogen of the atmosphere.

Mycorrhizae fungi provide nutrients to the plants. The filaments of the fungus absorb phosphorus and other nutrients from the soil and make them available to the plants.

5. जैव- उर्वरक किस प्रकार से मृदा की उर्वरता को बढ़ाते हैं?

उत्तर - जैव- उर्वरक का निर्माण विभिन्न प्रकार के जीवों; जैसे- नील- हरित शैवाल या सायनोबैक्टीरिया, जीवाणु एवं कवक से होता है।

सायनोबैक्टीरिया की कई जातियाँ; जैसे- नॉस्टॉक, ऐनाबीना, टोलीप्रोथिक्स आदि वायुमण्डल से नाइट्रोजन गैस को ग्रहण कर इसे नाइट्रोजन यौगिकों में परिणत कर देती हैं। इनमें हेटोसिस्ट नामक विशेष कोशिका पायी जाती है, जो नाइट्रोजन-स्थिरीकरण में मुख्य भूमिका निभाती है तथा मिट्टी की उर्वरा शक्ति को बढ़ाती है।

सहजीवी जीवाणु; जैसे- राइजोबियम मटर कुल के पौधों की जड़ों में ग्रंथियाँ बनाते हैं और वायुमण्डल से नाइट्रोजन गैस ग्रहण कर इसे नाइट्रोजन के यौगिकों के रूप में परिणत करते हैं। इससे मृदा की पोषक शक्ति की वृद्धि होती है।

भूमि में पाए जाने वाले मुक्तजीवी जीवाणु; जैसे-एजोटोबैक्टर, एजोस्पाइरिलम भी वायुमण्डल के नाइट्रोजन को स्थिरीकृत करते हैं।

माइकोराइजा के कवक पौधों को पोषक तत्व प्रदान करते हैं। कवक के तन्तु मृदा से फॉस्फोरस तथा अन्य पोषकों को ग्रहण कर पौधों को उपलब्ध कराते हैं।