CLASS XI BIO CH-11

MCQ Set 2: Photosynthesis in Higher Plants

- 1. Who performed experiments revealing the essential role of air in the growth of green plants?
- a) Jan Ingenhousz
- b) Joseph Priestley
- c) Julius von Sachs
- d) Melvin Calvin
- 2. Ingenhousz identified the bubbles formed around green parts of aquatic plants in bright sunlight as:
- a) Carbon dioxide
- b) Oxygen
- c) Nitrogen
- d) Hydrogen
- 3. Julius von Sachs provided evidence for the production of which sugar when plants grow?
- a) Fructose
- b) Sucrose
- c) Glucose
- d) Maltose
- 4. The first action spectrum of photosynthesis was described by:
- a) T.W Engelmann
- b) Julius von Sachs
- c) Joseph Priestley
- d) Jan Ingenhousz
- 5. The empirical equation for photosynthesis given in the text is:
- a) $CO_2+H_2O+Light \rightarrow [CH_2O]+O_2$
- b) $C_6H_{12}O_6+6O_2\rightarrow 6CO_2+6H_2O$
- c) $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$
- d) CO₂+H2O→Carbohydrates
- 6. Who demonstrated that photosynthesis is a light-dependent reaction where hydrogen reduces ${\rm CO_2}$ to carbohydrates?
- a) Melvin Calvin
- b) Cornelius van Niel
- c) Joseph Priestley
- d) Jan Ingenhousz
- 7. The correct equation for photosynthesis, as proved by radioisotopic techniques, shows that the O2 released comes from:
- a) Carbon dioxide
- b) Water
- c) Glucose
- d) Minerals

- 8. In green plants, photosynthesis takes place in: a) Roots only b) Leaves only c) All green parts d) Stem only 9. Within the chloroplast, the membrane system includes: a) Grana and stroma b) Grana, stroma lamellae, and stroma c) Stroma only d) Thylakoid only 10. The division of labor within the chloroplast involves the membrane system trapping light energy and synthesizing: a) Sugars b) ATP and NADPH c) Proteins d) Lipids 11. The pigments are organized into light-harvesting complexes within: a) Mitochondria b) Photosystem I and II c) Stroma d) Grana only 12. Which pigment is yellow green in the chromatogram? a) Chlorophyll a b) Chlorophyll b c) Xanthophylls d) Carotenoids 13. The wavelengths at which chlorophyll a shows maximum absorption are: a) Green and yellow b) Blue and red c) Violet and orange d) Yellow and red 14. Accessory pigments enable a wider range of wavelength to be utilized for photosynthesis and: a) Increase water absorption
 - b) Protect chlorophyll a from photo-oxidation
 - c) Enhance CO₂ fixation
 - d) Reduce photorespiration
 - 15. Light reactions do NOT include:
 - a) Water splitting
 - b) Oxygen release
 - c) Sugar synthesis
 - d) ATP formation
 - 16. The reaction centre in PS I is called:
 - a) P680
 - b) P700

- c) P650 d) P750 a) P680
- 17. The reaction centre in PS II is called:
- b) P700
- c) P650
- d) P750
- 18. The electron transport chain in light reaction consists of:
- a) Ribosomes
- b) Cytochromes
- c) ATP synthase
- d) RuBisCO
- 19. The Z scheme describes the:
- a) Path of carbon fixation
- b) Transfer of electrons
- c) Synthesis of ATP
- d) Regeneration of RuBP
- 20. The splitting of water produces:
- a) H⁺, O₂, , and electrons
- b) H₂ and O₂
- c) H₂O and CO₂
- d) ATP and NADPH
- 21. The products of light reaction used in the biosynthetic phase are:
- a) ATP and NADPH
- b) ATP and O₂
- c) NADPH and O₂
- d) CO₂ and H₂O
- 22. The synthesis of ATP in the presence of light is called:
- a) Photolysis
- b) Photophosphorylation
- c) Photorespiration
- d) Phosphorylation
- 23. Non-cyclic photophosphorylation involves:
- a) Only PS I
- b) Only PS II
- c) Both PS I and PS II
- d) Neither PS I nor PS II
- 24. Cyclic photophosphorylation results in the synthesis of:
- a) ATP only
- b) NADPH only
- c) Both ATP and NADPH
- d) Sugars
- 25. The chemiosmotic hypothesis involves the creation of a proton gradient across the:
- a) Mitochondrial membrane

b) Thylakoid membrane c) Nuclear membrane d) Plasma membrane	
26. The proton gradient is broken down by the movement of protons through: a) Cytochrome b) ATP synthase c) RuBisCO d) PEPcase	
27. The biosynthetic phase is dependent on the products of the light reaction, namely: a) ATP and NADPH b) ATP and $\rm O_2$ c) NADPH and $\rm O_2$ d) $\rm CO_2$ and $\rm H_2O$	
 28. The first CO₂ fixation product in the Calvin cycle is: a) 3-phosphoglyceric acid b) Oxaloacetic acid c) Ribulose bisphosphate d) Phosphoenol pyruvate 	
29. The primary CO_2 acceptor in the Calvin cycle is: a) PEP b) RuBP c) PGA d) OAA	
30. The enzyme that catalyzes the carboxylation of RuBP is: a) PEPcase b) RuBisCO c) ATP synthase d) Cytochrome	
31. For each CO_2 molecule fixed in the Calvin cycle, the number of ATP and NADPH required are a) 2 ATP and 2 NADPH b) 3 ATP and 2 NADPH c) 2 ATP and 3 NADPH d) 3 ATP and 3 NADPH	e:
32. To produce one molecule of glucose, the Calvin cycle must turn how many times? a) 2 b) 6 c) 8 d) 12	
 33. C₄ plants are adapted to: a) Temperate regions b) Dry tropical regions c) Aquatic regions 	

d) Arctic regions

34. The special leaf anatomy in C_4 plants is characterized by: a) Palisade cells b) Spongy mesophyll c) Kranz anatomy d) Vascular bundles
35. The primary CO_2 acceptor in C_4 plants is: a) RuBP b) PEP c) PGA d) OAA
36. The enzyme that fixes CO_2 in the mesophyll cells of C_4 plants is: a) RuBisCO b) PEPcase c) ATP synthase d) Cytochrome
 37. Photorespiration is prevalent in: a) C₃ plants b) C₄ plants c) Both C₃ and C₄ plants d) Neither
38. RuBisCO can bind to: a) CO_2 only b) O_2 only c) Both CO_2 and O_2 d) Neither CO_2 nor O_2
39. Blackman's Law of Limiting Factors states that the rate of a process is determined by the factor which is: a) At its maximum value b) Nearest to its minimal value c) Always light d) Always temperature
40. The major limiting factor for photosynthesis under normal conditions is: a) Light b) Temperature c) CO_2 concentration d) Water
41. Light saturation for photosynthesis occurs at what percentage of full sunlight? a) 5% b) 10% c) 50% d) 100%
42. C_4 plants achieve saturation at a CO_2 concentration of about: a) 180 μ IL ⁻¹ b) 360 μ IL ⁻¹

c) 450 µIL ⁻¹
d) 500 μlL ⁻¹
43. C ₄ plants have a temperature optimum that is:
a) Lower than C ₃ plants
b) Higher than C ₃ plants
c) The same as C_3 plants
d) Not related to temperature
44. Water stress affects photosynthesis by:
a) Directly inhibiting the light reactions
b) Causing stomatal closure
c) Denaturing enzymes
d) Breaking down chlorophyll
45. The first product of CO ₂ fixation in C ₄ plants is:
a) PGA
b) OAA
c) RuBP
d) PEP
46 In C. plants the Calvin avale takes place in the
46. In C ₄ plants, the Calvin cycle takes place in the:
a) Mesophyll cells
b) Bundle sheath cells
c) Epidermal cells
d) Guard cells
47. The number of carbon atoms in the primary CO_2 acceptor in C_3 plants is:
a) 3
b) 4
c) 5
d) 6
40. The number of early an atomic in the primary CO. Furtier much satin C. plants in
48. The number of carbon atoms in the primary CO_2 fixation product in C_4 plants is:
a) 3
b) 4
c) 5
d) 6
49. Photorespiration leads to the release of:
a) O ₂
b) CO ₂
c) N_2
d) H ₂ O
50. The most abundant enzyme on Earth is:
a) PEPcase
•
b) ATP synthase c) RuBisCO
d) Cytochrome
a) Oytoomonie

Answer Key for Set 2

- 1. b) Joseph Priestley
- 2. b) Oxygen
- 3. c) Glucose
- 4. a) T.W Engelmann
- 5. a) $CO_2+H_2O\rightarrow Light[CH_2O]+O_2$
- 6. b) Cornelius van Niel
- 7. b) Water
- 8. c) All green parts
- 9. b) Grana, stroma lamellae, and stroma
- 10. b) ATP and NADPH
- 11. b) Photosystem I and II
- 12. b) Chlorophyll b
- 13. b) Blue and red
- 14. b) Protect chlorophyll a from photo-oxidation
- 15. c) Sugar synthesis
- 16. b) P700
- 17. a) P680
- 18. b) Cytochromes
- 19. b) Transfer of electrons
- 20. a) H^+ , O_2 , and electrons
- 21. a) ATP and NADPH
- 22. b) Photophosphorylation
- 23. c) Both PS I and PS II
- 24. a) ATP only
- 25. b) Thylakoid membrane
- 26. b) ATP synthase
- 27. a) ATP and NADPH
- 28. a) 3-phosphoglyceric acid
- 29. b) RuBP
- 30. b) RuBisCO
- 31. b) 3 ATP and 2 NADPH
- 32. b) 6
- 33. b) Dry tropical regions
- 34. c) Kranz anatomy
- 35. b) PEP
- 36. b) PEPcase
- 37. a) C₃ plants
- 38. c) Both CO₂ and O₂
- 39. b) Nearest to its minimal value
- 40. c) CO₂ concentration
- 41. b) 10%
- 42. b) 360 µlL⁻¹
- 43. b) Higher than C₃ plants
- 44. b) Causing stomatal closure
- 45. b) OAA
- 46. b) Bundle sheath cells
- 47. c) 5
- 48. b) 4

