

वस्तुनिष्ठ प्रश्न

Q1: Magnetic field is not produced by:

- (a) A charge in uniform motion
- (b) A charge at rest
- (c) An accelerating charge
- (d) A decelerating charge

Q1: चुम्बकीय क्षेत्र का उत्पादन नहीं होता है:

- (a) एकसमान गति के आवेश में
- (b) विराम अवस्था के आवेश में
- (c) एक त्वरित आवेश में
- (d) एक मंदिर आवेश में

Ans- (b)

Q2: A current carrying coil acts as a magnetic dipole. If area of the coil is A and magnetic moment is M then current flowing through the coil is :

- (a) M/A
- (b) A/M
- (c) MA
- (d) M

Q2: एक विद्युत धारा प्रवाहित वाला कॉइल चुम्बकीय द्विधुत के रूप में कार्य करता है। यदि कुण्डली का क्षेत्रफल A और चुम्बकीय आघूर्ण M है तो कुण्डली में बहने वाली धारा है:

- (a) M/A
- (b) A/M
- (c) MA
- (d) M

Ans- (a)

Q3: A moving charge produces:

- (a) Only electric field
- (b) Only magnetic field
- (c) Electric and magnetic field both
- (d) None of these

Q3: एक गतिमान चार्ज उत्पन्न करता है:

- (a) केवल विद्युत क्षेत्र
- (b) केवल चुम्बकीय क्षेत्र
- (c) विद्युत और चुम्बकीय क्षेत्र दोनों
- (d) इनमें से कोई नहीं

Ans- (c)

Q4: When a current is made to flow through a conductor then it produces:

- (a) Only electric field
- (b) Only magnetic field
- (c) Electric field and magnetic field both
- (d) None of these

Q4: जब किसी चालक के माध्यम से करंट प्रवाहित किया जाता है तो यह उत्पन्न करता है:

- (a) केवल विद्युत क्षेत्र
- (b) केवल चुम्बकीय क्षेत्र
- (c) विद्युत क्षेत्र और चुम्बकीय क्षेत्र दोनों
- (d) इनमें से कोई नहीं

Ans- (b)

Q5: I ampere current is flowing through a wire of length “ l ”. It is placed parallel to uniform magnetic field. The work done on it will be:

- (a) $\frac{1}{2}ibl$
- (b) $2ibl$
- (c) Zero
- (d) $2Bl$

Q5: “ l ” लम्बाई के एक तार में I एम्पीयर धारा प्रवाहित हो रही है। इसको एकसमान चुम्बकीय क्षेत्र के समानांतर रखा जाता है। इस पर किया जाने वाला कार्य होगा:

- (a) $\frac{1}{2}ibl$
- (b) $2ibl$
- (c) Zero
- (d) $2Bl$

Ans- (c)

Q6: In an electric circuit:

- (a) Ammeter is connected in series and voltmeter in parallel
- (b) Ammeter is connected in parallel and voltmeter in series
- (c) Ammeter and voltmeter both are joined in series
- (d) Ammeter and voltmeter both are joined in parallel

Q6: एक विद्युत परिपथ में:

- (a) एमीटर को श्रेणीक्रम में और वोल्टमीटर को समानांतर क्रम में जोड़ा जाता है।
- (b) एमीटर को समानांतर क्रम में और वोल्टमीटर श्रेणीक्रम में में जोड़ा जाता है।
- (c) एमीटर और वोल्टमीटर दोनों को श्रेणीक्रम में में जोड़ा जाता है।
- (d) एमीटर और वोल्टमीटर दोनों को समानांतर क्रम में जोड़ा जाता है।

Ans- (a)

Q7: An α - particle is moving parallel to the magnetic field the force acts on it will be of:

(a) 1N (b) 2N
(c) 3N (d) 0

Q7: एक α - कण चुंबकीय क्षेत्र के समानांतर चल रहा है, इस पर लगने वाला बल होगा:

(a) 1N (b) 2N
(c) 3N (d) 0

Ans- (d)

Q8: A charge particle is moving in an uniform magnetic field. It will experience maximum force when:

(a) It will move parallel to magnetic field
(b) It will move perpendicular to magnetic field
(c) It will move at angle with field
(d) All the above

Q8: एक आवेश कण एक समान चुंबकीय क्षेत्र में गति कर रहा है। यह अधिकतम बल का अनुभव करेगा जब:

(a) यह चुंबकीय क्षेत्र के समानांतर चलेगा
(b) यह चुंबकीय क्षेत्र के लंबवत गति करेगा
(c) यह चुंबकीय क्षेत्र पर के कोण के साथ चलेगा
(d) उपरोक्त सभी।

Ans- (b)

Q9: The resistance of a galvanometer is R_G , resistance of ammeter is R_A and that of voltmeter is R_V . Which of the following statement is correct:

(a) $R_G > R_A > R_V$ (b) $R_G < R_A < R_V$
(c) $R_A < R_G < R_V$ (d) $R_A = R_G = R_V$

Q9: गैल्वेनोमीटर का प्रतिरोध है R_G , एमीटर का प्रतिरोध है R_A और वोल्टमीटर का है R_V । निम्नलिखित में से कौन सा कथन सही है:

(a) $R_G > R_A > R_V$ (b) $R_G < R_A < R_V$
(c) $R_A < R_G < R_V$ (d) $R_A = R_G = R_V$

Ans- (c)

Q10: Which of the following statement is incorrect:

(a) The resistance of an ideal ammeter is infinite
(b) resistance of an ideal ammeter is zero
(c) The torque acting on a coil in uniform magnetic field is maximum when its plate is parallel to the field
(d) The magnetic field is not uniform at the centre of current carrying coil

Q10: निम्न में से कौन सा कथन गलत है:

(a) एक आदर्श एमीटर का प्रतिरोध अनंत होता है।
(b) एक आदर्श एमीटर का प्रतिरोध शून्य होता है।
(c) कुंडली पर लगने वाला बल आधुर्ण अधिकतम तब होता है जब इसकी प्लेट की सतह चुंबकीय क्षेत्र के समानांतर होती है।
(d) कुंडली के केंद्र में चुंबकीय क्षेत्र एकसमान नहीं होता है।

Ans- (a)

Q11: Magnetic effect of electric current was discovered by:

(a) Fleming (b) Oersted
(c) Faraday (d) Ampere

Q11: विद्युत धारा के चुंबकीय प्रभाव की खोज किसने की:

(a) फ्लैमिंग (b) ओस्टर्ड
(c) फेराडे (d) एम्पीयर

Ans- (b)

Q12: A proton enters a uniform magnetic field of 5T with velocity 4×10^7 m/s at right angles to the field. The magnetic force acting on the proton is (Charge of Proton= 1.6×10^{-19} C)

(a) 3.2×10^{-13} N (b) 3.2×10^{-11} N
(c) 2.3×10^{-13} N (d) 3.0×10^{-10} N

Q12: एक प्रोटॉन 5T के एक समान चुंबकीय क्षेत्र में प्रवेश करता है जिसका वेग 4×10^7 मीटर/सेकंड है। प्रोटॉन पर लगने वाला चुंबकीय बल क्या है (प्रोटॉन का आवेश = 1.6×10^{-19} C)

(a) 3.2×10^{-13} N (b) 3.2×10^{-11} N
(c) 2.3×10^{-13} N (d) 3.0×10^{-10} N

Ans- (b)

Q13: Two long parallel wires each carrying a current of 1 A in the same direction, are placed 1m apart. The force of attraction between them is

(a) 2×10^{-7} N/m (b) 2×10^{-4} N/m
(c) 1×10^{-7} N/m (d) 4×10^{-7} N/m

Q13: दो लम्बे समान्तर तार, जिनमें से प्रत्येक में एक ही दिशा में 1 A धारा प्रवाहित हो रही है, एक दूसरे से 1 मीटर की दूरी पर रखे गए हैं। उनके बीच आकर्षण बल है

(a) 2×10^{-7} N/m (b) 2×10^{-4} N/m
(c) 1×10^{-7} N/m (d) 4×10^{-7} N/m

Ans- (a)

Q14: The expression for Lorentz Force is

(a) $F = qE$ (b) $F = q(B \times V)$
(c) $F = q[E + (V \times B)]$ (d) $F = [qE + (V \times B)]$

Q14: लॉरेंट्ज़ फोर्स के लिए व्यंजक है

(a) $F = qE$ (b) $F = q(B \times V)$
(c) $F = q[E + (V \times B)]$ (d) $F = [qE + (V \times B)]$

Ans- (c)

Q15: The magnetic field at a point at a distance r from the current carrying wire is proportional to

(a) r (b) r^2
(c) $\frac{1}{r}$ (d) $\frac{1}{r^2}$

Q15: धारावाही तार से r दूरी पर स्थित किसी बिंदु पर चुंबकीय क्षेत्र समानुपाती होता है

(a) r (b) r^2
(c) $\frac{1}{r}$ (d) $\frac{1}{r^2}$

Ans- (d)

Q16: Which of the following equations represents Biot-savart law?

(a) $dB = \frac{\mu_0 |d|}{4\pi r^2}$ (b) $\vec{dB} = \frac{\mu_0 |d| \sin \theta}{4\pi r^2}$
 (c) $\vec{dB} = \frac{\mu_0}{4\pi} \frac{Idl \times \vec{r}}{r^2}$ (d) $\vec{dB} = \frac{\mu_0}{4\pi} \frac{Idl \times \vec{r}}{r^3}$

Q16: निम्नलिखित में से कौन सा समीकरण बायोट-सावर्ट नियम का प्रतिनिधित्व करता है?

(a) $dB = \frac{\mu_0 |d|}{4\pi r^2}$ (b) $\vec{dB} = \frac{\mu_0 |d| \sin \theta}{4\pi r^2}$
 (c) $\vec{dB} = \frac{\mu_0}{4\pi} \frac{Idl \times \vec{r}}{r^2}$ (d) $\vec{dB} = \frac{\mu_0}{4\pi} \frac{Idl \times \vec{r}}{r^3}$

Ans- (d)

Q17: Dimensions of permeability is

(a) $[MLT^{-2}A^{-2}]$ (b) $[MLT^2A^{-2}]$
 (c) $[MLT^{-1}A^{-2}]$ (d) $[MLT^{-2}A^{-1}]$

Q17: पारगम्पता का विमीय सूत्र है:

(a) $[MLT^{-2}A^{-2}]$ (b) $[MLT^2A^{-2}]$
 (c) $[MLT^{-1}A^{-2}]$ (d) $[MLT^{-2}A^{-1}]$

Ans- (a)

Q18: If the number of turns in a moving coil galvanometer is increased its sensitivity:

(a) Increases
 (b) decreases
 (c) remains the same
 (d) may increase or decrease

Q18: यदि गतिमान कुण्डली गैल्वेनोमीटर में घुमावों की संख्या बढ़ा दी जाए तो इसकी संवेदनशीलता:

(a) बढ़ता है
 (b) घटता है
 (c) वही रहता है
 (d) बढ़ या घट सकता है

Ans- (a)

Q19: Unit of magnetic field is

(a) $Wb\ m^2$ (b) Wb/ m^2
 (c) Wb (d) Wb / m

Q19: चुंबकीय क्षेत्र की इकाई है

(a) $Wb\ m^2$ (b) Wb/ m^2
 (c) Wb (d) Wb / m

Ans- (b)

Q20: According to Ampere's circuital law

(a) $\oint \vec{B} \times d\vec{l} = 0$ (b) $\oint \vec{B} \cdot d\vec{l} = \mu_0 I$
 (c) $\oint \vec{B} \times d\vec{l} = 0$ (d) $\oint \vec{B} \cdot d\vec{l} = \frac{\mu_0 I}{4\pi}$

Q20: एम्पीयर के परिपथीय नियम के अनुसार

(a) $\oint \vec{B} \times d\vec{l} = 0$ (b) $\oint \vec{B} \cdot d\vec{l} = \mu_0 I$
 (c) $\oint \vec{B} \times d\vec{l} = 0$ (d) $\oint \vec{B} \cdot d\vec{l} = \frac{\mu_0 I}{4\pi}$

Ans- (b)

Q21: When the ammeter is shunted, its measuring range

(a) Increases
 (b) decreases
 (c) remains the same
 (d) may increase or decrease

Q21: जब एमीटर को शट किया जाता है, तो इसकी मापने की सीमा में क्या बदलाव होता है?

(a) बढ़ता है (b) घटता है
 (c) वही रहता है (d) बढ़ या घट सकता है

Ans- (a)

Q22: An electron enters perpendicular to a uniform magnetic field. The path of the electron will be :

(a) Circular (b) Parabolic
 (c) Linear (d) Spiral

Q22: एक इलेक्ट्रॉन एकसमान चुंबकीय क्षेत्र के लम्बवत् प्रवेश करता है। इलेक्ट्रॉन का पथ होगा:

(a) वृत्तीय (b) परवलयिक
 (c) रेखिक (d) सर्पिल

Ans- (a)

Q23: Dimension of magnetic field is:

(a) $[ML^0 T^{-2}A^{-1}]$ (b) $[MLT^2A^{-2}]$
 (c) $[MLT^{-1}A^{-2}]$ (d) $[MLT^{-2}A^{-1}]$

Q23: चुंबकीय क्षेत्र की विमीय सूत्र है:

(a) $[ML^0 T^{-2}A^{-1}]$ (b) $[MLT^2A^{-2}]$
 (c) $[MLT^{-1}A^{-2}]$ (d) $[MLT^{-2}A^{-1}]$

Ans- (a)

Q24: What is the effect of increasing the number of turns on magnetic field produced due to circular coil

(a) Increases (b) decreases
 (c) remains the same (d) none of these

Q24: वृत्ताकार कुण्डली के कारण उत्पन्न चुंबकीय क्षेत्र पर फेरों की संख्या बढ़ने का क्या प्रभाव पड़ता है

(a) बढ़ता है (b) घटता है
 (c) वही रहता है (d) इनमें से कोई नहीं

Ans- (a)

Q25: Mention S.I. unit of magnetic field :

(a) Gauss (b) Tesla
 (c) Weber (d) None of these

Q25: चुंबकीय क्षेत्र की S.I. इकाई का उल्लेख करें:

- (a) गॉस
- (b) टेस्ला
- (c) वेबर
- (d) कोई नहीं

Ans- (b)

Q26: What is Lorentz force

- (a) Force on a moving charge in a magnetic field
- (b) Force on a current carrying conductor in a uniform magnetic field
- (c) Force on parallel current carrying conductors
- (d) None of these

Q26: लोरेंज बल क्या है

- (a) चुंबकीय क्षेत्र में गतिमान आवेश पर बल
- (b) एकसमान चुंबकीय क्षेत्र में धारावाही चालक पर बल
- (c) समानांतर धारावाही चालकों पर बल
- (d) इनमें से कोई नहीं

Ans- (a)

Q27: A charge (q) is moving in a uniform magnetic field (B) such that velocity (v) is parallel to B, then the force acting on charge is :

- (a) Zero
- (b) qvB
- (c) qB/v
- (d) None of these

Q27: एक आवेश (q) एकसमान चुंबकीय क्षेत्र (B) में इस प्रकार गति कर रहा है कि वेग (v) B के समानांतर है, तो आवेश पर कार्य करने वाला बल है:

- (a) शून्य
- (b) qvB
- (c) qB/v
- (d) इनमें से कोई नहीं

Ans- (a)

Q28: A charge (q) is moving in a uniform magnetic field (B) such that velocity (v) is perpendicular to B, then the force acting on charge is :

- (a) Zero
- (b) qvB
- (c) qB/v
- (d) None of these

Q28: एक आवेश (q) एकसमान चुंबकीय क्षेत्र (B) में इस प्रकार गति कर रहा है कि वेग (v) B के लम्बवत् है, तब आवेश पर कार्य करने वाला बल है:

- (a) शून्य
- (b) qvB
- (c) qB/v
- (d) इनमें से कोई नहीं

Ans- (b)

Q29: Two parallel conductors carrying current in the same direction will

- (a) Attract each other
- (b) Repel each other
- (c) Neither attract nor repel
- (d) None of these

Q29: एक ही दिशा में धारा प्रवाहित करने वाले दो समानांतर चालक

- (a) एक दूसरे को आकर्षित करेगा
- (b) एक दूसरे को विकर्षण करेगा
- (c) न तो आकर्षित करेगा और न ही विकर्षण करेगा
- (d) इनमें से कोई नहीं

Ans- (a)

Q30: If the current through loop of a wire is tripled, its magnetic moment will become :

- (a) Half
- (b) Doubled
- (c) Four times
- (d) Tripled

Q30: यदि किसी तार के लूप में प्रवाहित धारा को तीन गुना कर दिया जाए, तो इसका चुंबकीय आघूर्ण हो जाएगा:

- (a) आधा
- (b) दोगुना
- (c) चार गुना
- (d) तीन गुना

Ans- (d)

Q31: What is the use of Galvanometer:

- (a) To measure deflection when current is passed in the circuit
- (b) To measure the potential difference
- (c) To measure Voltage
- (d) None of these

Q31: गैल्वेनोमीटर का उपयोग क्या है:

- (a) परिपथ में धारा प्रवाहित होने पर विक्षेपण को मापने के लिए
- (b) विभवांतर को मापने के लिए
- (c) वोल्टेज मापने के लिए
- (d) इनमें से कोई नहीं

Ans- (a)

Q32: Dimensions of magnetic moment are:

- (a) $[M^0 L^2 T^0 A^1]$
- (b) $[MLT^2 A^2]$
- (c) $[MLT^{-1} A^2]$
- (d) $[MLT^{-2} A^{-1}]$

Q32: चुम्बकीय आघूर्ण की विमाएँ हैं:

- (a) $[M^0 L^2 T^0 A^1]$
- (b) $[MLT^2 A^{-2}]$
- (c) $[MLT^{-1} A^2]$
- (d) $[MLT^{-2} A^{-1}]$

Ans- (a)

Q33: S.I unit of magnetic moment is :

- (a) IT^{-2}
- (b) Am^2
- (c) IT
- (d) Am^{-1}

Q33: चुम्बकीय आघूर्ण का S.I. मात्रक है:

- (a) IT^{-2}
- (b) Am^2
- (c) IT
- (d) Am^{-1}

Ans- (b)

Q34: Do magnetic field lines always form closed loops

- (a) Yes
- (b) No
- (c) Sometimes
- (d) None of these

Q34: क्या चुम्बकीय क्षेत्र रेखाएँ हमेशा बंद लूप बनाती हैं

- (a) हाँ
- (b) नहीं
- (c) कभी-कभी
- (d) इनमें से कोई नहीं

Ans- (a)

Q35: When a magnetic dipole is placed in a uniform magnetic field, it will experience

- (a) A force but no torque
- (b) A torque but no force

- (c) A force as well as a torque
- (d) Neither a force nor a torque

Q35: जब एक चुंबकीय द्विधूर को एक समान चुंबकीय क्षेत्र में रखा जाता है, तो यह अनुभव करेगा

- (a) एक बल लेकिन कोई बल आधूर्ण नहीं।
- (b) एक बल आधूर्ण लेकिन कोई बल नहीं।
- (c) एक बल और साथ ही एक बल आधूर्ण।
- (d) न तो बल और न ही बल आधूर्ण।

Ans- (b)

Subjective Question (विषयनिष्ठ प्रश्न)

Q1: What is meant by magnetic field give its SI unit

Ans: The space around a magnet or a current carrying conductor in which its magnetic influence can be experienced is called the magnetic field. Its SI unit is tesla.

Q1: चुंबकीय क्षेत्र का क्या अर्थ है? इसका SI मात्रक बतायें।

उत्तर: एक चुंबक या विद्युत धारा प्रवाहित होने वाले चालक के आसपास का स्थान जिसमें उसके चुंबकीय प्रभाव का अनुभव किया जा सकता है, चुंबकीय क्षेत्र कहलाता है। इसका SI मात्रक टेस्ला है।

Q2: What do you mean by magnetic field lines? Mention the properties of magnetic field lines.

Ans: The magnetic field line is the path along which an isolated north pole will tend to move if it is free to do so.

Properties:-

- (i) Magnetic field lines are closed continuous curves.
- (ii) The tangent at any point of the magnetic lines of force gives the direction of the magnetic field at that point.
- (iii) No two magnetic lines of force can intersect each other.
- (iv) Magnetic lines of force are crowded in the region of strong magnetic field.

Q2: चुंबकीय क्षेत्र रेखाओं से आप क्या समझते हैं? चुंबकीय क्षेत्र रेखाओं के गुण लिखिए।

उत्तर: चुंबकीय क्षेत्र रेखा वह पथ है जिसके साथ एक पृथक उत्तरी ध्रुव गति करेगा यदि वह ऐसा करने के लिए स्वतंत्र है।

गुण:-

- (i) चुंबकीय क्षेत्र रेखाएं बंद निरंतर वक्र रेखा होती है।
- (ii) चुंबकीय क्षेत्र रेखाओं के किसी भी बिंदु पर स्पर्श रेखा उस बिंदु पर चुंबकीय क्षेत्र की दिशा बताती है।
- (iii) कोई भी दो चुंबकीय क्षेत्र रेखाएँ एक दूसरे को नहीं काटती हैं।
- (iv) चुंबकीय क्षेत्र रेखाएँ प्रबल चुंबकीय क्षेत्र में घनीभूत होती हैं।

Q3: Which fields are produced by a moving charge?

Ans: A moving charge produces both magnetic field and electric field.

Q3: गतिमान आवेश द्वारा कौन से क्षेत्र उत्पन्न होते हैं?

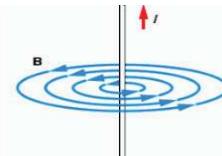
उत्तर: एक गतिमान आवेश के द्वारा चुंबकीय क्षेत्र और विद्युत क्षेत्र दोनों उत्पन्न होता है।

Q4: Which fields are produced by a charge at rest?

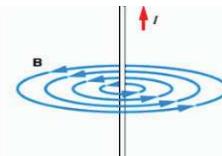
Ans: A charge at rest produces only an electric field.

Q4: स्थिर आवेश द्वारा कौन से क्षेत्र उत्पन्न होते हैं?

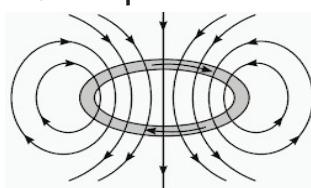
उत्तर: स्थिर आवेश के द्वारा केवल विद्युत क्षेत्र उत्पन्न होता है।

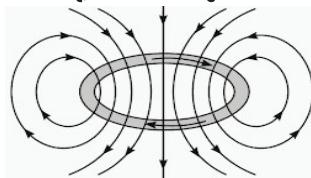

Q5: Which fields are produced by a current carrying conductor?

Ans: A current carrying conductor produces only magnetic field

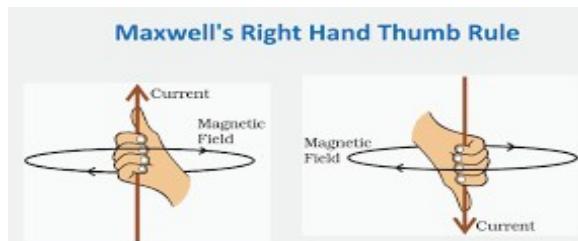

Q5: विद्युत धारा प्रवाहित होने वाले चालक के द्वारा कौन से क्षेत्र उत्पन्न होते हैं?

उत्तर: विद्युत धारा प्रवाहित होने वाले चालक के द्वारा केवल चुंबकीय क्षेत्र उत्पन्न होता है।

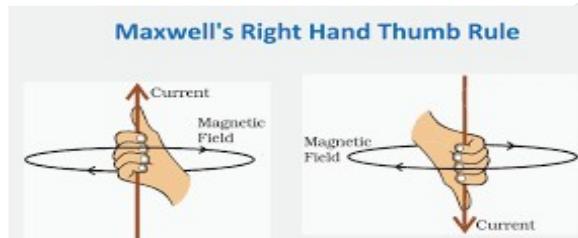

Q6: Draw the magnetic field lines due to a current carrying straight wire


Q6: विद्युत धारा प्रवाहित होने वाले तार के कारण चुंबकीय क्षेत्र रेखाएँ खींचिए।

Q7: Draw the magnetic field lines due to a current carrying circular loop


Q7: धारावाही वृत्ताकार लूप के कारण चुंबकीय क्षेत्र रेखाएँ खींचिए।

Q8: State Maxwell's right hand thumb rule.


Ans: If a conductor carrying current is imagined to be held

in the right hand such that the thumb points in the direction of current then the tips of the curled fingers encircling the conductors will give the direction of the magnetic field lines as shown in figure

Q8: मैक्सवेल के दाहिने हाथ के अंगूठे का नियम बताइए।

उत्तर: दाँए हाथ के अँगूठे का नियम: यदि धारावाही चालक को दाँए हाथ में इस प्रकार रखा जाये कि अँगूठा धारा की दिशा में रहे, तब मुझी हर्दी अँगुलियां चुम्बकीय बल रेखाओं की दिशा देंगी जैसा कि चिंति में दिखाया गया है।

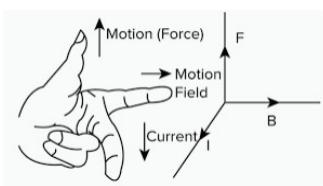
Q9: What is the Lorentz force ?

Ans: The total force experienced by a charge moving inside the electric and magnetic fields is called Lorentz force. It is given by:

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$

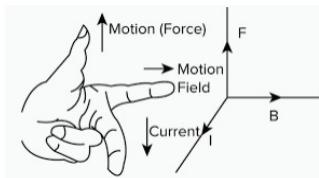
Electric force *Magnetic force*

Q9: लोरेंत्ज़ बल क्या है?


उत्तर: वैद्युत और चुंबकीय क्षेत्रों के अंदर गतिमान आवेश द्वारा अनुभव किए गए कुल बल को लोरेंट्ज बल कहा जाता है। यह इस प्रकार दिया जाता है।

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$

Electric force Magnetic force


Q10: State Fleming's left hand rule .

Ans: Stretch the thumb and first two fingers of the left hand in mutually perpendicular directions, if the fore finger points in the direction of magnetic field central finger in the direction of current then the thumb gives the direction of the force on the conductor

Q10: फ्लैमिंग का वामहस्त नियम लिखिए।

उत्तर: बाएं हाथ के अंगूठे और पहली दो उंगलियों को परस्पर लंबवत् दिशाओं में इस तरह से फैलाएं जिससे तर्जनी उंगलि चंबकीय क्षत्र की दिशा में और केंद्रीय उंगली विद्युत धारा की दिशा में इंगित करता हो तो अंगूठा चालक पर लगन वाले बल की दिशा को बतायेगा।

Q11: Differentiate between Ammeter and Voltmeter.

Ans:

Ammeter	Voltmeter
1. It is used to measure electric current flowing in an electrical circuit.	1. It is used to measure potential difference between two points of an electrical circuit.
2. A galvanometer can be converted into an ammeter by connecting a small resistance (called shunt) in parallel with it.	2. A galvanometer can be converted into a voltmeter by connecting a large resistance in series to the galvanometer.
3. It is always connected in series with an electrical circuit.	3. It is always connected in parallel with an electrical circuit.
4. Its resistance is very low. An ideal ammeter has zero resistance.	4. Its resistance is very high. An ideal voltmeter has infinite resistance.

Q11: ऐमीटर और वोल्टमीटर में अंतर स्पष्ट कीजिए।

उत्तरः

ऐमीटर	वोल्टमीटर
1. इसका उपयोग विद्युत परिपथ में प्रवाहित विद्युत धारा को मापने के लिए किया जाता है।	1. इसका उपयोग विद्युत परिपथ के दो बिन्दुओं के बीच विभवान्तर मापने में किया जाता है।
2. किसी गैल्वेनोमीटर को ऐमीटर में इसके समानान्तर एक अल्प प्रतिरोध (जिसे शंट कहते हैं) लगाकर परिवर्तित किया जा सकता है।	2. किसी गैल्वेनोमीटर के श्रेणी क्रम में एक उच्च प्रतिरोध जोड़कर इसे वोल्टमीटर में परिवर्तित किया जा सकता है।
3. यह सदैव विद्युत परिपथ के साथ श्रेणीक्रम में जुड़ा होता है।	3. यह हमेशा एक विद्युत परिपथ के साथ समानांतर में जुड़ा होता है।
4. इसका प्रतिरोध बहुत कम होता है। एक आदर्श ऐमीटर का प्रतिरोध शून्य होता है।	4. इसका प्रतिरोध बहुत अधिक होता है। एक आदर्श वोल्टमीटर का प्रतिरोध अनंत होता है।

Q12: What will be the work done by a magnetic field on a moving charge?

Ans. Zero, because the Lorentz force acting on a charge is perpendicular to its velocity.

Q12: किसी गतिमान आवेश पर चुंबकीय क्षेत्र द्वारा किया जाने वाला कार्य क्या होगा ?

उत्तर. शून्य, क्योंकि आवेश पर कार्य करने वाला लोरेंत्ज बल उसके वेग के लंबवत होता है।

Q13: A charged particle moves in an uniform magnetic field with initial velocity. Give the shape of its path in the following conditions :

(i) When it moves parallel to field,

(ii) Perpendicular to field,

(iii) Making an arbitrary angle with the direction of the field.

Ans. (i) Straight line,

(ii) A circular path perpendicular to the plane of the field,

(iii) Helix, whose axis is parallel to the field.

Q13: एक आवेशित कण एक समान चुंबकीय क्षेत्र में प्रारंभिक वेग के साथ चलता है। निम्नलिखित स्थितियों में इसके पथ का आकार बतायें :

(i) जब यह चुंबकीय क्षेत्र के समानांतर चलता है,

(ii) जब यह चुंबकीय क्षेत्र के लंबवत चलता है,

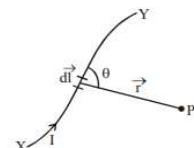
(iii) जब यह चुंबकीय क्षेत्र की दिशा के साथ कोण बनाता है।

उत्तर. (i) सीधी रेखा,

(ii) क्षेत्र के तल के लम्बवत् एक वृत्ताकार पथ,

(iii) हेलिक्स, जिसका अक्ष चुंबकीय क्षेत्र के समानांतर है।

Q14: A magnetic field cannot produce any change in the speed of a charged particle. Why ?


Ans. Because the force acting on a charged particle in a magnetic field is perpendicular to the direction of motion of the charged particle.

Q14: एक चुंबकीय क्षेत्र आवेशित कण की गति में कोई परिवर्तन नहीं कर सकता है। क्यों ?

उत्तर. एक चुंबकीय क्षेत्र आवेशित कण की गति में कोई परिवर्तन नहीं कर सकता है क्योंकि चुंबकीय क्षेत्र में आवेशित कण पर कार्य करने वाला बल आवेशित कण की गति की दिशा के लंबवत होता है।

Q15: State Biot Savart's law.

Ans: Biot-Savart's law:- The strength of magnetic field (dB) at a point P due to the current element dl will be dependent on,

(i) $dB \propto I$

(ii) $dB \propto dl$

(iii) $dB \propto \sin\theta$

(iv) $dB \propto \frac{1}{r^2}$

where, θ is the angle between length of the current element and line joining the element to point (p)

On combining

$$dB \propto \frac{Idl \sin \theta}{r^2} \Rightarrow dB = k \frac{Idl \sin \theta}{r^2} \quad [k = \text{Proportionality constant}]$$

In S.I. units, $k = \frac{\mu_0}{4\pi}$ where μ_0 is called permeability of free space.

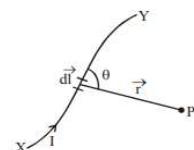
$$\mu_0 = 4\pi \times 10^{-7} \text{ TA}^{-1}\text{m}$$

$$\therefore dB = \frac{\mu_0}{4\pi} \frac{Idl \sin \theta}{r^2} \text{ and } d\vec{B} = \frac{\mu_0}{4\pi} I \frac{(\vec{dl} \times \vec{r})}{r^3}$$

where μ_0 is the absolute permeability of the free space. The direction of the magnetic field dB is perpendicular to the plane containing vector \vec{dl} and vector \vec{r} and is directed into the plane of paper.

Q15: बायो सावर्ट का नियम बताएं।

उत्तर: बायो-सावर्ट का नियम:- धारावाही अल्पांश dl के कारण बिंदु P पर चुंबकीय क्षेत्र (dB) की सामर्थ्य निम्न पर निर्भर करेगी,


(i) $dB \propto I$

(ii) $dB \propto dl$

(iii) $dB \propto \sin\theta$

(iv) $dB \propto \frac{1}{r^2}$

जहाँ θ , धारावाही अल्पांश dl और \vec{r} के बीच का कोण है।

संयोजन करने पर

$$dB \propto \frac{Idl \sin \theta}{r^2} \Rightarrow dB = k \frac{Idl \sin \theta}{r^2}$$

[k = Proportionality constant]

$$\text{In S.I. units, } k = \frac{\mu_0}{4\pi}$$

where μ_0 is called permeability of free space.

$$\mu_0 = 4\pi \times 10^{-7} \text{ TA}^{-1}\text{m}$$

$$\therefore dB = \frac{\mu_0}{4\pi} \frac{Idl \sin \theta}{r^2} \text{ and } d\vec{B} = \frac{\mu_0}{4\pi} I \frac{(\vec{dl} \times \vec{r})}{r^3}$$

जहाँ μ_0 को मुक्त स्थान की पूर्ण पारगम्यता कहते हैं।

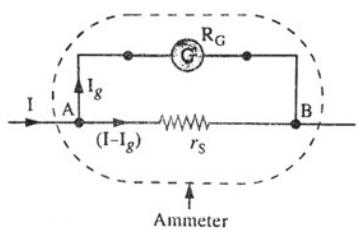
यहाँ चुंबकीय क्षेत्र dB की दिशा \vec{dl} और \vec{r} से युक्त तल के लम्बवत् होगी और कागज के तल में लम्बवत् अंदर की ओर निर्देशित होती है।

Q16: State Ampere's circuital law.

Ans: Ampere's Circuital Law: The line integral of magnetic field induction B around any closed path in vacuum is equal to μ_0 times the total current threading the closed path,

$$\text{i.e. } \oint \vec{B} \cdot d\vec{l} = \mu_0 I$$

where, B is the magnetic field, dl is small element, μ_0 is the absolute permeability of free space and I is the current.


Q 16 : ऐप्पीयर का परिपथीय नियम बताइए।

उत्तर: ऐप्पीयर का परिपथीय नियम: निवार्त में किसी भी बंद पथ के चारों ओर चुंबकीय क्षेत्र प्रेरण B का समाकलन पथ में कुलधारा तथा निरपेक्ष पारगम्यता μ_0 के गुणनफल के बराबर होता है।

यानी $\oint \vec{B} \cdot d\vec{l} = \mu_0 I$ जहाँ, B चुंबकीय क्षेत्र है, dl अल्पांश तत्व है μ_0 मुक्त स्थान का निरपेक्ष पारगम्यता है और I विदुतधारा है।

Q17: How can a galvanometer be converted into an ammeter? Calculate the effective resistance of the ammeter.

Ans: A galvanometer is converted into an ammeter by connecting a small resistance (called shunt) in parallel with it.

Let G = Resistance of the galvanometer.

S = Resistance of the shunt.

I = Total current detected by the ammeter in the circuit.

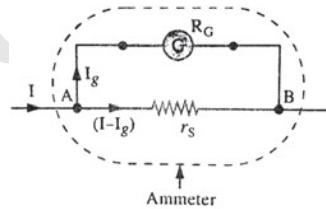
I_g = Current through the galvanometer at which full deflection occurs in the galvanometer.

$(I - I_g)$ = Remaining current flows through the shunt.

Since G and S are parallel, the potential difference across them is the same.

$$I_g G = (I - I_g) S$$

$$S = \left(\frac{I_g}{I - I_g} \right) G$$


This is the required value of shunt resistance to convert a galvanometer into an ammeter of range $0 - I$.

Effective resistance of the ammeter: The total effective resistance R_{eff} of the ammeter can be written as:

$$\frac{1}{R_{\text{eff}}} = \frac{1}{G} + \frac{1}{S} = \frac{G + S}{GS} \text{ या } R_{\text{eff}} = \frac{GS}{G + S}$$

गैल्वेनोमीटर को एमीटर में किस प्रकार परिवर्तित किया जा सकता है? एमीटर का प्रभावी प्रतिरोध की गणना कीजिए।

उत्तर: किसी गैल्वेनोमीटर को एमीटर में इसके समानान्तर एक अल्प प्रतिरोध (जिसे शंट कहते हैं) लगाकर परिवर्तित किया जाता है।

माना की G = गैल्वेनोमीटर का प्रतिरोध है।

S = शंट का प्रतिरोध है।

I = परिपथ में एमीटर द्वारा जात कुल धारा है।

I_g = गैल्वेनोमीटर से प्रवाहित वह धारा है जिस पर गैल्वेनोमीटर में पूर्ण विक्षेप उत्पन्न होता है।

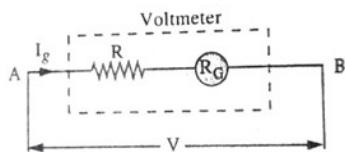
$(I - I_g)$ = शेष धारा शंट से होकर प्रवाहित होती है।

G और S समानान्तर हैं जिसके कारण उनमें विभवान्तर भी समान होता है।

अर्थात्

$$I_g G = (I - I_g) S$$

$$S = \left(\frac{I_g}{I - I_g} \right) G$$


यह गैल्वेनोमीटर को $0 - I$ ऐप्पीयर सीमा के एमीटर में परिवर्तित करने के लिए आवश्यक शंट प्रतिरोध का मान है।

एमीटर का प्रभावी प्रतिरोध: एमीटर का कुल प्रभावी प्रतिरोध R_{eff} को निम्न प्रकार से लिखा जा सकता है।

$$\frac{1}{R_{\text{eff}}} = \frac{1}{G} + \frac{1}{S} = \frac{G + S}{GS} \text{ या } R_{\text{eff}} = \frac{GS}{G + S}$$

Q18: How can a galvanometer be converted into a voltmeter? Calculate the effective resistance of the voltmeter.

Ans: A galvanometer can be converted into a voltmeter by connecting a large resistance in series to the galvanometer

Let G = resistance of the galvanometer.

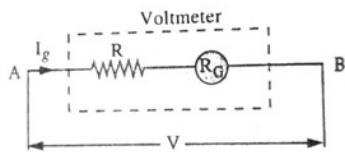
R = resistance of the conductor connected in series with the galvanometer.

I_g = current through the galvanometer at which full deflection occurs in the galvanometer.

V = the potential difference measured by the voltmeter.

Now the potential difference between points A and B can be represented as follows.

$$\begin{aligned} V &= I_g R + I_g G \\ &= I_g (R + G) \\ \Rightarrow R + G &= \frac{V}{I_g} \\ \Rightarrow R &= \frac{V}{I_g} - G \end{aligned}$$


It is the value of the required resistance that is connected in series with the galvanometer to convert it into a voltmeter of 0 - V volts.

The effective resistance of the voltmeter is given by

$R_{eff} = (R + G)$, which is very high. Thus voltmeter is a high resistance device. The resistance of an ideal voltmeter is infinite. A voltmeter is always connected in parallel to the circuit.

Q18: एक गैल्वेनोमीटर को वोल्टमीटर में किस प्रकार परिवर्तित किया जा सकता है? वोल्टमीटर का प्रभावी प्रतिरोध की गणना कीजिए।

उत्तर: किसी गैल्वेनोमीटर के श्रेणी क्रम में एक उच्च प्रतिरोध जोड़कर इसे वोल्टमीटर में परिवर्तित किया जाता है।

माना की G = गैल्वेनोमीटर का प्रतिरोध है।

R = गैल्वेनोमीटर के श्रेणी क्रम में संयोजित चालक का प्रतिरोध है।

I_g = गैल्वेनोमीटर से प्रवाहित वह धारा है जिस पर गैल्वेनोमीटर में पूर्ण विक्षेप उत्पन्न होता है।

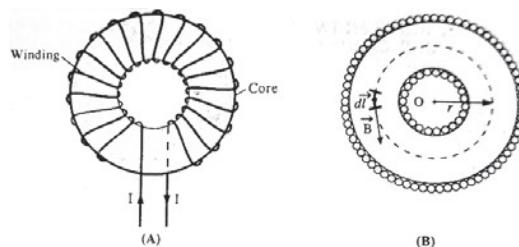
V = वोल्टमीटर के द्वारा मापा गया विभवान्तर है।

अब A और B बिन्दुओं के मध्य विभवान्तर को निम्न प्रकार से दर्शाया जा सकता है।

$$\begin{aligned} V &= I_g R + I_g G \\ &= I_g (R + G) \\ \Rightarrow R + G &= \frac{V}{I_g} \\ \Rightarrow R &= \frac{V}{I_g} - G \end{aligned}$$

यह आवश्यक प्रतिरोध का मान है जिसे गैल्वेनोमीटर के श्रेणी क्रम में जोड़ा जाता है जिससे यह 0 - V वोल्ट के वोल्टमीटर में परिवर्तित हो जाता है।

वोल्टमीटर का प्रभावी प्रतिरोध: वोल्टमीटर का प्रभावी प्रतिरोध को निम्न प्रकार से लिखा जा सकता है।


$$R_{eff} = (R + G)$$

इस प्रकार वोल्टमीटर एक उच्च प्रतिरोध वाली युक्ति है। आदर्श वोल्टमीटर का प्रतिरोध अनन्त होता है।

किसी वोल्टमीटर को सदैव परिपथ के समान्तर क्रम में संयोजित किया जाता है।

Q19: Using Ampere's circuital law, derive an expression for the magnetic field along the axis of a current carrying toroidal solenoid.

Ans: Toroid can be considered as a ring shaped closed solenoid. The magnetic lines of force in a toroid lie in the core of the toroid and are in the form of concentric circles. Consider a toroid with n turns per unit length in which a current is I . Imagine a circle of radius r inside the toroid.

now

$$\oint \vec{B} \cdot d\vec{l} = \oint B dl \cos 0$$

By symmetry, the magnetic field \vec{B} in the coil is constant and is along the tangent of the path $d\vec{l}$. Therefore, the angle θ between \vec{B} and $d\vec{l}$ is zero, thus

$$\oint \vec{B} \cdot d\vec{l} = \oint B dl \cos 0 = B \oint dl$$

$= B \times \text{Circumference of the circle of radius } r$.

$$\text{Or } \oint \vec{B} \cdot d\vec{l} = B \times 2\pi r \quad (1)$$

According to Ampere's circuit law

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \times \text{net current enclosed by the circle of radius } r$$

$$= \mu_0 \times \text{total number of turns} \times I$$

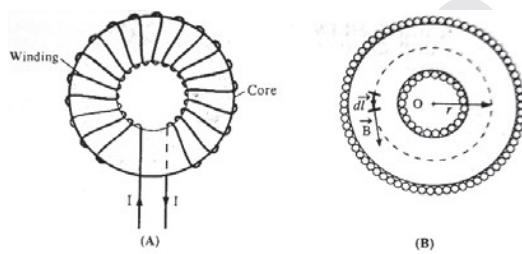
$$= \mu_0 (n \times 2\pi r) I \quad \dots \dots \dots (2)$$

Comparing equation (1) and (2) we get

$$B \times 2\pi r = \mu_0 (n \times 2\pi r) I \quad \dots \dots \dots (3)$$

$$B = \mu_0 n I$$

If the total number of turns is N then $N = n \times 2\pi r$


$$\text{or } n = \frac{N}{2\pi r}$$

$$\text{equation (3) It can be written that } B = \frac{\mu_0 N I}{2\pi r}$$

For any point inside the empty space surrounded by toroid and outside the toroid, the magnetic field B is zero because the net current enclosed in these spaces is zero.

Q19: ऐम्पियर परिपथीय नियम का प्रयोग करते हुए, विद्युत धारावाही टोरोइडल परिनालिका के अक्ष के अनुदिश चुम्बकीय क्षेत्र के लिए व्यंजक प्राप्त करें।

उत्तर: टोरोइड एक वृत्त के समान बन्द परिनालिका मानी जा सकती है। टोरोइड में चुम्बकीय बल रेखाएँ टोरोइड के परिधि में रहती हैं और संकेन्द्रीय वृत्तों के रूप में होती हैं। प्रति इकाई लम्बाई में n फेरों वाली टोरोइड की कल्पना कीजिए जिसमें प्रवाहित धारा I है। टोरोइड के अन्दर r त्रिज्या के वृत्त की कल्पना कीजिए।

अब

$$\oint \vec{B} \cdot d\vec{l} = \oint B dl \cos \theta$$

इसके समरूप, कुण्डली में चुम्बकीय क्षेत्र \vec{B} निश्चित है और dl मार्ग की स्पर्श रेखा पर है, इसके मध्य कोण शून्य है, इस प्रकार

$$\oint \vec{B} \cdot d\vec{l} = \oint B dl \cos 0 = B \oint dl$$

$$= B \times r \text{ त्रिज्या के वृत्त कि परिधि}$$

$$\text{Or } \oint \vec{B} \cdot d\vec{l} = B \times 2\pi r \quad \dots \dots \dots (1)$$

ऐम्पियर के परिपथीय नियम के अनुसार

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \times r \text{ त्रिज्या के वृत्त के चारों ओर धारा}$$

$$= \mu_0 \times \text{कुल फेरों कि संख्या} \times I$$

$$= \mu_0 (n \times 2\pi r) I \quad \dots \dots \dots (2)$$

समीकरण (1) और (2) में तुलना करने पर

$$B \times 2\pi r = \mu_0 (n \times 2\pi r) I \quad \dots \dots \dots (3)$$

$$B = \mu_0 n I$$

यदि कुल फेरों की संख्या N है तब

$$N = n \times 2\pi r$$

$$\text{या } n = \frac{N}{2\pi r}$$

$$\text{समीकरण (3) को लिखा जा सकता है } B = \frac{\mu_0 N I}{2\pi r}$$

टोरोइड के अन्दर रिक्त स्थान में किसी बिन्दु पर तथा टोरोइड के बाहर चुम्बकीय क्षेत्र B शून्य होता है क्योंकि

इन स्थानों में परिवृत्त (enclosed) परिणामी धारा शून्य होती है।

Q20: What is the use of a Galvanometer?

Ans: Uses of Galvanometer

(i) It is used to detect electric current in a circuit, (e.g. in Wheatstone bridge)

(ii) It is used as an ammeter by using a low resistance across it.

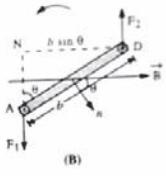
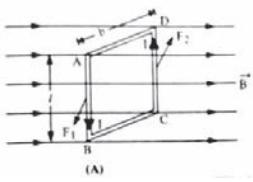
(iii) It is used as a voltmeter by using a high resistance in series with it.

(iv) It is used as an Ohm meter by making special arrangements.

Q20: गैलवैनोमीटर का क्या उपयोग हैं?

उत्तर: गैलवैनोमीटर के उपयोग (Uses of Galvanometer)

(i) इसका उपयोग किसी परिपथ में धारा की उपस्थिति जात करने के लिये किया जाता है, उदाहरणार्थ व्हीटस्टैन सेटु (Wheatstone bridge) में



(ii) इसके आर-पार कम प्रतिरोध का प्रयोग करके इसका ऐमीटर के रूप में प्रयोग किया जाता है।

(iii) उच्च समानान्तर प्रतिरोध को इसके श्रेणी क्रम से प्रयोग करके इसको वोल्टमीटर के रूप में प्रयोग किया जाता है।

(iv) विशेष प्रबंध करके इसका ओममीटर (Ohm meter) के रूप में प्रयोग किया जाता है।

Q21: Derive an expression for the torque on a rectangular coil of area A carrying a current I placed in a magnetic field B . The angle between the direction of B and the vector perpendicular to the plane of the coil is θ .

Ans: Consider a rectangular conducting loop (ABCD) of length l and breadth b placed in a uniform magnetic field \vec{B} . Let I be the current flowing in the loop in anticlockwise direction. Let θ be the angle between the normal (n) of the plane of the loop and the magnetic field \vec{B} . Fig(B) which shows the magnified top view of arm AD of the loop ABCD.

We know, force acting on a conductor of length l carrying current I in the magnetic field is given by

$$\vec{F} = I(\vec{l} \times \vec{B})$$

\therefore Force acting on the arm AB of the loop

$$\vec{F}_1 = I(\vec{l} \times \vec{B}) \quad \dots \text{(i)}$$

Direction of \vec{F}_1 is perpendicular to the length of arm AB and directed outward of the sheet of paper (Fleming's left hand rule).

Similarly, the force acting on the arm CD of the loop is $\vec{F}_2 = I(\vec{l} \times \vec{B}) \quad \dots \text{(ii)}$

\vec{F}_2 is perpendicular to the length of arm CD and is directed inside the sheet of the paper (Fleming's left hand rule)

Force acting on the arm BC and force acting on the arm DA of the loop are equal, opposite and act along the same line, hence they cancel each other as shown in Fig (C). Therefore, only two forces \vec{F}_1 and \vec{F}_2 act on the loop. \vec{F}_1 and \vec{F}_2 form a couple and try to rotate the loop anticlockwise.

The magnitude of the torque (τ) due to forces \vec{F}_1 and \vec{F}_2 is given by

τ = Magnitude of the either force \times lever arm

$$= F_1 \times DN$$

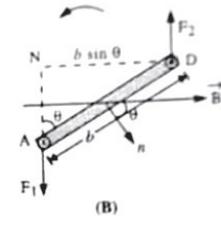
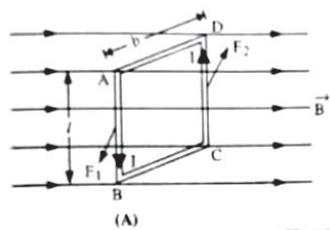
$$= |I(\vec{l} \times \vec{B})| \times DN$$

$$= I(lB \sin 90^\circ) \times b \sin \theta$$

$$\tau = I(lB)b \sin \theta$$

Since $(l/b) = A$ = Area of the loop

$$\therefore \tau = IAB \sin \theta$$



If there are N turns in the loop, then the net torque acting on the loop is

$$\tau = NIAB \sin \theta = MB \sin \theta$$

where $M = NIA$ = The magnetic dipole moment of Current carrying loop with N turns.

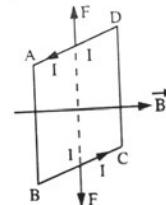
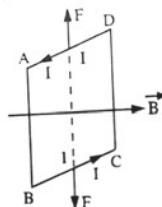
Q21: B चुम्बकीय क्षेत्र में स्थित। धारावाही A क्षेत्रफल वाली आयताकार कण्डली के लिए बल आधूर्ण का व्यंजक व्युत्पित कीजिए। B की दिशा और कुण्डली के तल के लम्बवत् संदिश के मध्य कोण है।

उत्तर: चुम्बकीय क्षेत्र में धारावाही लूप पर बल आधूर्ण (Torque on a Rectangular Current Loop in a Uniform Magnetic Field)

माना एक समान चुम्बकीय क्षेत्र \vec{B} में। लम्बाई तथा b चौड़ाई का एक आयताकार चालक लूप स्थित है। लूप में प्रवाहित धारा वामावर्त दिशा में है। चुम्बकीय क्षेत्र \vec{B} तथा लूप के तल के अभिलम्ब के मध्य कोण θ लिया गया है। लूप ABCD की भुजा AD का आवर्धित रूप चित्र (B) में प्रदर्शित किया गया है। हम जानते हैं कि चुम्बकीय क्षेत्र में चालक की / लम्बाई में धारा। प्रवाह के कारण कार्यरत् बल

$$\vec{F} = I(\vec{l} \times \vec{B})$$

\therefore लूप की AB भुजा पर कार्यरत् बल, $\vec{F}_1 = I(\vec{l} \times \vec{B}) \quad \dots \text{(i)}$



\vec{F}_1 की दिशा AB भुजा की लम्बाई के लम्बवत् तथा कागज की शीट के बाहर की ओर होती है और फ्लॉमिंग के बाएँ हाथ का नियम के अनुसार।

इसी प्रकार लूप की भुजा CD पर कार्यरत् बल

$$\vec{F}_2 = I(\vec{l} \times \vec{B}) \quad \dots \text{(ii)}$$

\vec{F}_2 भुजा CD के लम्बवत् होता है और कागज के तल के अन्दर की ओर होता है (फ्लॉमिंग के बाएँ हाथ का नियम के अनुसार)।

भुजा BC पर कार्यरत् बल भुजा DA पर कार्यरत् बल समान, विपरीत और समान रेखा के संगत कार्य करता है, इस प्रकार वे एक-दूसरे को निरस्त कर देते हैं जैसा की निचे के चित्र में दिखाया गया है।

\vec{F}_1 और \vec{F}_2 एक युम बनाते हैं और लूप को वामावर्त घुमाने का प्रयास करते हैं। \vec{F}_1 और \vec{F}_2 बल के कारण लगाने वाले बल आधूर्ण (τ) का परिमाण दिया जा सकता है।

τ = किसी भी बल का परिमाण \times लीवर भुजा

$$= F_1 \times DN$$

$$= |I(\vec{l} \times \vec{B})| \times DN$$

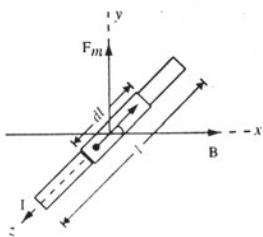
$$= I(lB \sin 90^\circ) \times b \sin \theta$$

$$\tau = I(lB)b \sin \theta$$

लेकिन $(l/b) = A$ = लूप का क्षेत्रफल

$$\therefore \tau = IAB \sin \theta$$

यदि लूप में N फेरे हों, तब कुल बल आधूर्ण जो लूप पर कार्य कर रहा है

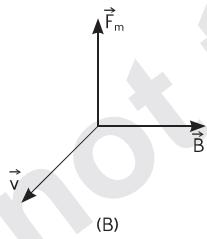

$$\tau = NIAB \sin \theta = MB \sin \theta$$

जहाँ $M = NIA = N$ फेरे वाली धारा वाही लूप का चुम्बकीय दिव्युव आधूर्ण हैं।

Q22: Derive an expression for the force acting on a current carrying conductor placed in a uniform magnetic field. Name the rule which gives the direction of the force. Write the condition for which this force will have maximum and minimum value

Ans: A current carrying conductor contains a large number of free electrons. These electrons move with drift velocity \vec{v} in a direction opposite to the direction of conventional current flowing in the conductor. An electron moving in a uniform magnetic field experiences a deflecting force which is transmitted to the conductor.

Consider a conductor of length l carrying a current I placed in a uniform magnetic field \vec{B} as shown in figure.


Let n = Number of free electrons per unit volume of the conductor.

A = Area of cross-section of the conductor.

Magnetic Lorentz force acting on an electron,

$$\vec{f}_m = -e(\vec{v} \times \vec{B}) \quad \dots \dots \dots (i)$$

acting perpendicular to the plane containing \vec{v} and \vec{B}

Now consider a small element of length dl of the given conductor.

Number of electrons in the small element = $n \times$ volume of the element = $nAdl$

\therefore Magnetic Lorentz Force experienced by the element,

$$\vec{v} = -\frac{d\vec{l}}{dt}$$

$$d\vec{F}_m = (nAdl)\vec{f}_m = nAdl[-e(\vec{v} \times \vec{B})] = -nAedl(\vec{v} \times \vec{B}) \quad \dots \dots \dots (ii)$$

But drift velocity, $\vec{v} = -\frac{d\vec{l}}{dt}$ (Since $d\vec{l}$ is in a

direction opposite to \vec{v}) and $(nA dl) e = dq$ where dq is the charge on the small element.

$$\therefore d\vec{F}_m = dq \left(\frac{d\vec{l}}{dt} \times \vec{B} \right) = \frac{dq}{dt} (\vec{dl} \times \vec{B})$$

$$\therefore d\vec{F}_m = I(\vec{dl} \times \vec{B})$$

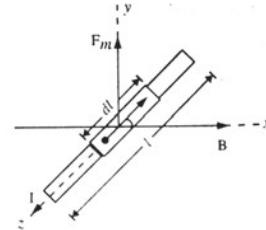
Since conductor is made of large number of such elements, therefore, total force experienced by the conductor is given by,

$$\vec{F}_m = \int d\vec{F}_m = \int I(\vec{dl} \times \vec{B}) \text{ or } \vec{F}_m = I(\vec{l} \times \vec{B})$$

Direction of \vec{F}_m is perpendicular to the plane containing \vec{B} and \vec{dl} and can be determined by using Fleming's Left Hand Rule.

Condition for minimum Force:

If $\theta = 0^\circ$ or 180° , $F_m = 0$. It means the current carrying conductor experiences no force when placed parallel or anti-parallel to the direction of the magnetic field.

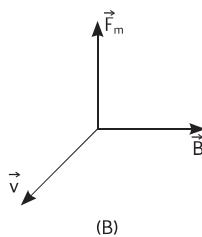

Condition for maximum Force:

If $\theta = 90^\circ$, $F_m = BIl$. It means, a current carrying conductor placed at right angle to the uniform magnetic field experiences maximum force.

Q22: एक समान चुंबकीय क्षेत्र में रखे धारावाही चालक पर कार्य करने वाले बल के लिए एक व्यंजक व्युत्पन्न कीजिए। उस नियम का नाम बताइए जो बल की दिशा बताता है। वह स्थिति लिखिए जिसके लिए इस बल का अधिकतम और न्यूनतम मान होगा।

उत्तर: एक धारावाही चालक में बड़ी संख्या में मुक्त इलेक्ट्रॉन होते हैं। ये इलेक्ट्रॉन चालक में प्रवाहित होने वाली संवहन धारा की दिशा के विपरीत अपवाह वेग \vec{v} से गति करते हैं। एक समान चुंबकीय क्षेत्र में गतिमान एक इलेक्ट्रॉन एक विक्षेपक बल का अनुभव करता है जो चालक को स्थानांतरित हो जाता है।

किसी समरूप चुम्बकीय क्षेत्र \vec{B} में स्थित लम्बाई के चालक पर विचार करते हैं जैसा कि चित्र में दिखाया गया है। माना इसमें से प्रवाहित धारा I है।


माना की n = चालक के प्रति इकाई आयतन में मुक्त इलेक्ट्रॉन्स की संख्या।

A = चालक के अनुप्रस्थ काट का क्षेत्रफल।

किसी इलेक्ट्रॉन पर कार्यरत चुम्बकीय लोरेन्ज बल,

$$\vec{f}_m = -e(\vec{v} \times \vec{B}) \quad \dots \dots \dots (i)$$

बल \vec{F}_m की दिशा \vec{v} और \vec{B} के तल के लम्बवत् होती है जैसा की चित्र में दिखाया गया है।

अब dl लम्बाई के किसी अल्पांश पर विचार करते हैं।

अल्पांश में इलेक्ट्रॉन्स की संख्या = n × अल्पांश का आयतन = $nAdl$

∴ अल्पांश पर लगने वाला चुम्बकीय लोरेन्ज बल,

$$d\vec{F}_m = (nAdl) \vec{f}_m = nAdl [-e(\vec{v} \times \vec{B})] = -nAedl (\vec{v} \times \vec{B}) \quad \dots \dots \text{(ii)}$$

लेकिन अपवाह वेग, $\vec{v} = -\frac{d\vec{l}}{dt}$ (चूंकि $d\vec{l}$, \vec{v} के विपरीत दिशा में हैं)

और $(nA dl) e = dq$ जहां छोटे तत्व पर आवेश है।

$$\therefore d\vec{F}_m = dq \left(\frac{d\vec{l}}{dt} \times \vec{B} \right) = \frac{dq}{dt} (\vec{dl} \times \vec{B})$$

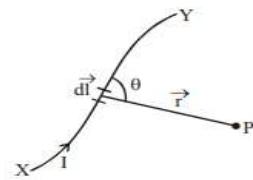
$$\therefore d\vec{F}_m = I (\vec{dl} \times \vec{B})$$

चूंकि चालक इस प्रकार के अल्पांशों की बड़ी संख्या से मिलकर बना है, अतः चालक द्वारा अनुभव किया गया कुल बल इस प्रकार दिया जाता है,

$$\vec{F}_m = \int d\vec{F}_m = \int I (\vec{dl} \times \vec{B}) \text{ or } \vec{F}_m = I (\vec{l} \times \vec{B})$$

\vec{F}_m की दिशा \vec{B} और \vec{dl} के समतल के लंबवत होती है तथा इसे फ्लैमिंग के बाएं हाथ के नियम का उपयोग करके निर्धारित किया जा सकता है।

न्यूनतम बल के लिए शर्तः


यदि $\theta = 0^\circ$ या 180° , $F_m = 0$. इसका अर्थ है कि धारावाही चालक को चुम्बकीय क्षेत्र की दिशा के समानांतर या विपरीत दिशा में रखने पर कोई बल नहीं लगता है।

अधिकतम बल के लिए शर्तः

यदि $\theta = 90^\circ$, $F_m = BIl$ इसका अर्थ है, एक समान चुम्बकीय क्षेत्र के समकोण पर रखा गया धारावाही चालक अधिकतम बल का अनुभव करता है।

Q23: State Biot Savart's law. Derive an expression for magnetic field strength B at a point P due to current flowing through a straight conductor.

Ans: Biot-Savart's law:- The strength of magnetic field (dB) at a point P due to the current element dl will be dependent on,

$$(i) dB \propto I$$

$$(ii) dB \propto dl$$

$$(iii) dB \propto \sin\theta$$

$$(iv) dB \propto \frac{1}{r^2}$$

where, θ is the angle between length of the current element and line joining the element to point (p)

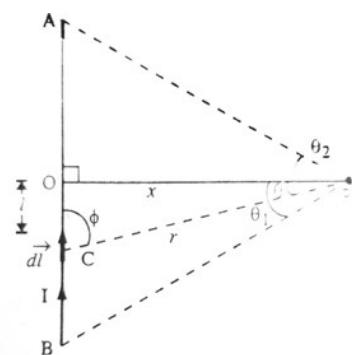
On combining

$$dB \propto \frac{Idl \sin\theta}{r^2} \Rightarrow dB = k \frac{Idl \sin\theta}{r^2}$$

[k = Proportionality constant]

$$\text{In S.I. units, } k = \frac{\mu_0}{4\pi}$$

where μ_0 is called permeability of free space.


$$\mu_0 = 4\pi \times 10^{-7} \text{ TA}^{-1}\text{m}$$

$$\therefore dB = \frac{\mu_0}{4\pi} \frac{Idl \sin\theta}{r^2} \text{ and } d\vec{B} = \frac{\mu_0}{4\pi} I \frac{(\vec{dl} \times \vec{r})}{r^3}$$

where μ_0 is the absolute permeability of the free space. The direction of the magnetic field dB is perpendicular to the plane containing vector dl and vector r and is directed into the plane of paper.

Magnetic field due to infinitely long straight wire carrying current using Biot Savart's law

Consider a long straight wire AB carrying current I. Let P be the point at a distance x from the wire, where the magnetic field is to be calculated. Consider a small current element of length dl at distance l from the centre of wire. Let r be the distance of a point P from the current element.

According to Biot Savart's law, magnetic field at point P due to small element of the wire is given by

$$dB = \frac{\mu_0}{4\pi} \frac{Idl \sin \phi}{r^2} \quad \dots \dots \dots \text{(i)}$$

In right angle triangle $\triangle POC$,

$$\sin \phi = \frac{x}{r} = \cos \theta \quad \dots \dots \dots \text{(ii)}$$

Or

$$r = \frac{x}{\cos \theta} \quad \dots \dots \dots \text{(iii)}$$

$$\tan \theta = \frac{1}{x} \text{ or } l = x \tan \theta$$

$$dl = x \sec^2 \theta d\theta \quad \dots \dots \dots \text{(iv)}$$

Substitution the values of equations (ii), (iii) and (iv) in equation (i), we get

$$dB = \frac{\mu_0}{4\pi} \frac{I(x \sec^2 \theta) \cos \theta}{(x^2 / \cos^2 \theta)}$$

$$\text{Or, } dB = \frac{\mu_0}{4\pi} \frac{I \cos \theta d\theta}{x} \quad \dots \dots \dots \text{(v)}$$

Magnetic field due to the whole conductor AB can be calculated by integrating equation (v) within the limit from $-\theta_1$ to θ_2 .

$$B = \int_{-\theta_1}^{\theta_2} dB = \frac{\mu_0 I}{4\pi x} \int_{-\theta_1}^{\theta_2} \cos \theta d\theta$$

$$B = \frac{\mu_0 I}{4\pi x} [\sin \theta]_{-\theta_1}^{\theta_2} = \frac{\mu_0 I}{4\pi x} [\sin \theta_2 - \sin(-\theta_1)]$$

$$B = \frac{\mu_0 I}{4\pi x} [\sin \theta_1 + \sin \theta_2] \quad (\because \sin(-\theta_1) = -\sin \theta_1)$$

If the straight wire is infinitely long, then θ_1 to θ_2 are taken as $\pi/2$, then above equation becomes

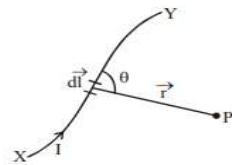
$$B = \frac{\mu_0 I}{4\pi x} \left(\sin \frac{\pi}{2} + \sin \frac{\pi}{2} \right) = \frac{\mu_0 I}{4\pi x} (I + 1)$$

$$B = \frac{\mu_0}{4\pi} \left(\frac{2I}{x} \right)$$

Here, the direction of magnetic field at point P will be perpendicular to the plane containing vector and vector dl and vector r is directed into the plane of paper.

Q23: बायो सावर्ट का नियम बताएं। किसी सीधे चालक से प्रवाहित धारा के कारण बिंदु P पर चुंबकीय क्षेत्र की प्रबलता B के लिए व्यंजक व्युत्पन्न कीजिए।

उत्तर: बायो-सावर्ट का नियम:- धारावाही अल्पांश dl के कारण बिंदु P पर चुंबकीय क्षेत्र (dB) की सामर्थ्य निम्न पर निर्भर करेगी,


(i) $dB \propto I$

(ii) $dB \propto dl$

(iii) $dB \propto \sin \theta$

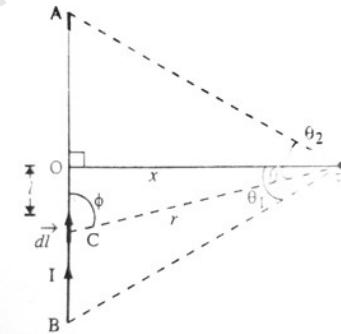
(iv) $dB \propto \frac{1}{r^2}$

जहाँ θ , धारावाही अल्पांश dl और r के बीच का कोण है।

संयोजन करने पर

$$dB \propto \frac{Idl \sin \theta}{r^2} \Rightarrow dB = k \frac{Idl \sin \theta}{r^2} \quad [k = \text{Proportionality constant}]$$

In S.I. units, $k = \frac{\mu_0}{4\pi}$ where μ_0 is called permeability of free space.


$$\mu_0 = 4\pi \times 10^{-7} \text{ TA}^{-1}\text{m}$$

$$\therefore dB = \frac{\mu_0}{4\pi} \frac{Idl \sin \theta}{r^2} \text{ and } d\bar{B} = \frac{\mu_0}{4\pi} I \frac{(dl \times \vec{r})}{r^3}$$

जहाँ μ_0 को मुक्त स्थान की पूर्ण पारगम्यता कहते हैं।

यहाँ चुंबकीय क्षेत्र dB की दिशा dl और r से युक्त तल के लम्बवत् होगी और कागज के तल में लम्बवत् अंदर की ओर निर्देशित होती है।

सीधे धारावाही तार के कारण चुंबकीय क्षेत्र : लंबे सीधे तार AB में प्रवाहित धारा I की कल्पना कीजिए। तार पर a दूरी पर एक बिंदु P लीजिए जहाँ चुंबकीय क्षेत्र की गणना करनी है। dl लंबाई के अल्प धारावाही अल्पांश की कल्पना कीजिए। धारावाही अल्पांश के मध्य बिंदु C से r दूरी पर बिंदु P लीजिए।

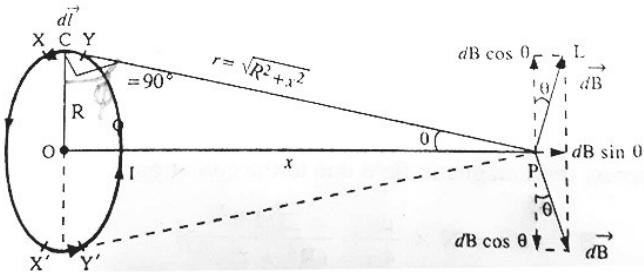
बायोट सावर्ट के नियम के अनुसार, धारावाही तार के अल्पांश (छोटे तत्त्व) के कारण बिंदु P पर चुंबकीय क्षेत्र दिया जाता है।

$$dB = \frac{\mu_0}{4\pi} \frac{Idl \sin \phi}{r^2} \quad \dots \dots \dots \text{(i)}$$

समकोण त्रिभुज में $\triangle POC$ से,

$$\sin \phi = \frac{x}{r} = \cos \theta \quad \dots \dots \dots \text{(ii)}$$

या


$$r = \frac{x}{\cos \theta} \quad \dots \dots \dots \text{(iii)}$$

$$\tan \theta = \frac{1}{x} \text{ or } l = x \tan \theta$$

$$dl = x \sec^2 \theta d\theta \quad \dots \dots \dots \text{(iv)}$$

समीकरण (ii), (iii) और (iv) के मानों को समीकरण (i) में रखने पर हम पाते हैं।

मान लीजिए कि त्रिज्या R के एक वृत्ताकार लूप जिसमें I धारा प्रवाहित हो रही है के धरी पर बिंदु P है। लूप के केंद्र से x दूरी पर बिंदु P स्थित है। बायोट सावर्ट के नियम के अनुसार, धारावाही तार के अल्पांश (छोटे तत्व) XY के कारण बिंदु P पर चुम्बकीय क्षेत्र दिया जाता है।

$$dB = \frac{\mu_0}{4\pi} \frac{Idl \sin \phi}{r^2} \quad \dots \dots \dots (i)$$

चूंकि $\phi = 90^\circ$, इसलिए समीकरण (i) को निम्न तरीके से लिखा जा सकता है

$$dB = \frac{\mu_0}{4\pi} \frac{Idl \sin 90^\circ}{r^2} = \frac{\mu_0}{4\pi} \frac{Idl}{r^2} \quad \dots \dots \dots (ii)$$

\vec{dB} की दिशा \vec{dl} और \vec{r} के तल के लंबवत हैं और PL के दिशा में हैं जो PC के लंबवत हैं। dB को दो घटकों में विभाजित करने पर -

(i) $dB \cos \theta$, जो लूप के अक्ष के लंबवत है।

(ii) $dB \sin \theta$, जो लूप के अक्ष के दिशा में केंद्र से दूर है।

चूंकि लूप अपनी अक्ष के चारों ओर सममित रहती है, इसलिए dl लम्बाई का प्रत्येक धारावाही अंश का एक समान और विपरीत अल्पांश होता है। उदाहरण के लिए अल्पांश XY का समान और विपरीत अल्पांश X'Y' है। इन अल्पांश के कारण चुम्बकीय क्षेत्र के लंबवत घटक $dB \cos \theta$ बराबर और विपरीत होने के कारण एक दूसरे को निरस्त कर देते हैं। कारण चुम्बकीय क्षेत्र के घटक $dB \cos \theta$ समान और विपरीत दिशा में हैं एक दूसरे को निरस्त करते हैं इसलिए चुम्बकीय क्षेत्र के लंबवत घटकों (यानी $dB \cos \theta$) का शुद्ध चुम्बकीय क्षेत्र में कुल योगदान शून्य होता है।

दूसरी ओर, लूप के प्रत्येक अल्पांश के कारण चुम्बकीय क्षेत्र का $dB \sin \theta$ घटक एक ही दिशा में निर्देशित होता है। इसलिए परे लूप के कारण बिंदु P पर चुम्बकीय क्षेत्र $dB \sin \theta$ के घटकों के योग के बराबर होता है। अर्थात्

$$B = \sum dB \sin \theta \text{ or } B = \int dB \sin \theta \text{ or } B = \int \frac{\mu_0}{4\pi} \frac{Idl}{r^2} \sin \theta \text{ (using eqn.(ii))}$$

$$B = \frac{\mu_0 I \sin \theta}{4\pi r^2} \int dl$$

$$\therefore B = \frac{\mu_0 \sin \theta \times 2\pi R}{4\pi r^2}$$

$$\sin \theta = \frac{R}{r} \therefore B = \frac{\mu_0 I}{4r^2} \cdot \frac{R \cdot 2\pi R}{r} \\ = \left(\frac{\mu_0}{4\pi} \right) \frac{2\pi I R^2}{r^3} \text{ but } r = \sqrt{R^2 + x^2}$$

$$B = \frac{\mu_0}{4\pi} \frac{2\pi I R^2}{(R^2 + x^2)^{3/2}}$$

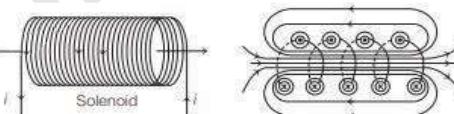
यदि लूप में N फेरे हैं, तो कुण्डली के कारण बिंदु P पर चुम्बकीय क्षेत्र होता है,

$$B' = nB = N \times \frac{\mu_0}{4\pi} \cdot \frac{2\pi I R^2}{(R^2 + x^2)^{3/2}}$$

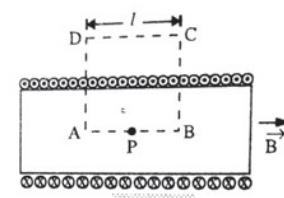
$$B' = \frac{\mu_0}{4\pi} \cdot 2\pi NI \cdot \frac{R^2}{(R^2 + x^2)^{3/2}}$$

लूप के केंद्र में चुम्बकीय क्षेत्र को उपरोक्त समीकरण में $x = 0$ रखकर जात किया जा सकता है।

$$B' = \frac{\mu_0}{4\pi} \frac{2\pi NI}{R}$$


Q25: State and explain Ampere's circuital law. Obtain an expression for the magnetic field along the axis of a current carrying solenoid of length L and having N numbers of turns.

Ans: Ampere's Circuital Law: The line integral of magnetic field B around any closed path in vacuum is equal to μ_0 times the total current threading the closed path,


$$\text{i.e. } \oint \vec{B} \cdot d\vec{l} = \mu_0 I$$

where, B is the magnetic field, dl is small element, μ_0 is the absolute permeability of free space and I is the current.

Solenoid: A solenoid is a closely wound helix of insulated copper wire. Magnetic field inside the solenoid is almost uniform, strong and directed along the axis of the solenoid. The magnetic field outside a very long solenoid is very weak and can be neglected.

Consider a very long solenoid having n turns per unit length of solenoid. Let current I be flowing through the solenoid. Let P be a point well within the solenoid. Consider any rectangular loop ABCD passing through point P as shown in figure.

Line integral of magnetic field across the loop ABCD,

$$\oint \vec{B} \cdot d\vec{l} = \int_A^B \vec{B} \cdot d\vec{l} + \int_B^C \vec{B} \cdot d\vec{l} + \int_C^D \vec{B} \cdot d\vec{l} + \int_D^A \vec{B} \cdot d\vec{l} \quad \dots \dots \dots (i)$$

\vec{B} is perpendicular to path BC and AD i.e. angle between \vec{B} and $d\vec{l}$ is 90° for these paths.

$$\int_B^C \vec{B} \cdot d\vec{l} = \int_D^A \vec{B} \cdot d\vec{l} = \int B dl \cos 90^\circ = 0$$

Since path CD is outside the solenoid, where \vec{B} is taken as zero,

$$\text{so, } \int_C \vec{B} \cdot d\vec{l} = 0$$

For path AB, the direction of $d\vec{l}$ and \vec{B} is same i.e. $\theta = 0$.

Hence equation (i) becomes

$$\oint \vec{B} \cdot d\vec{l} = \int_A^B \vec{B} \cdot d\vec{l} = \int_A^B B dl \cos 0 = \int_A^B B dl$$

$$\oint \vec{B} \cdot d\vec{l} = B \int_A^B dl \quad (\because B \text{ is uniform})$$

$$\oint \vec{B} \cdot d\vec{l} = Bl \left(\because \int_A^B dl = \text{total length of path AB} = l \right) \quad \dots \text{(ii)}$$

According to Ampere's circuital law,

$$\begin{aligned} \oint \vec{B} \cdot d\vec{l} &= \mu_0 \times \text{net current enclosed by loop ABCD} \\ &= \mu_0 \times \text{number of turns in the loop ABCD} \times I = \mu_0 nI \end{aligned} \quad \dots \text{(iii)}$$

Comparing eq (ii) and (iii), We get

$$Bl = \mu_0 nI$$

$$B = \mu_0 nI$$

Where $n = N/l$ = numbers of turn per unit length.

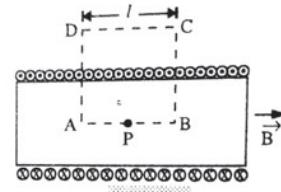
N = Total numbers of turns of solenoid

and l = length of solenoid.


$$\text{So } B = \frac{\mu_0 NI}{l}$$

Q25: ऐम्पियर का परिपथीय नियम बताइए और समझाइए। लंबाई l की धारावाही परिनालिका के अक्ष के अनुदिश चुंबकीय क्षेत्र के लिए व्यंजक प्राप्त करें यदि इसमें घुमावें की संख्या N है।

उत्तर: ऐम्पियर का परिपथीय नियम: निवात में किसी भी बंद पथ के चारों ओर चुंबकीय क्षेत्र प्रेरण B का समाकलन पथ में कुलधारा तथा निरपेक्ष पारागम्यता (μ_0) के गुणनफल के बराबर होता है।


यानी $\oint \vec{B} \cdot d\vec{l} = \mu_0 I$ जहाँ, B चुंबकीय क्षेत्र है, $d\vec{l}$ अल्पांश तत्व है, μ_0 मुक्त स्थान का निरपेक्ष पारागम्यता है और I विदुतधारा है।

परिनालिका: परिनालिका विद्युतरोधित ताँबे के तार का बारीकी से लिपटा हुआ कुण्डल है। परिनालिका के अंदर चुंबकीय क्षेत्र लगभग समान, मजबूत और परिनालिका की धूरी के साथ निर्देशित होता है। बहुत लंबे परिनालिका के बाहर चुंबकीय क्षेत्र बहुत कमज़ोर होता है और इसे उपेक्षित किया जा सकता है।

एक बहुत लंबी परिनालिका पर विचार करें जिसमें परिनालिका की प्रति इकाई लंबाई में n फेरे हैं। मान लीजिए कि परिनालिका

से धारा I प्रवाहित हो रही है। मान लीजिए कि P परिनालिका के भीतर एक बिंदु है। कि सी भी आयताकार लूप ABCD पर विचार करें जो बिंदु P से होकर गुजरता है जैसा कि चित्र में दिखाया गया है।

लूप ABCD के आर-पार चुंबकीय क्षेत्र का रेखा समाकलन,

$$\oint \vec{B} \cdot d\vec{l} = \int_A^B \vec{B} \cdot d\vec{l} + \int_B^C \vec{B} \cdot d\vec{l} + \int_C^D \vec{B} \cdot d\vec{l} + \int_D^A \vec{B} \cdot d\vec{l} \quad \dots \text{(i)}$$

\vec{B} पथ BC और AD के लम्बवत् होता है अर्थात् \vec{B} और $d\vec{l}$ होता है इन पर्थों के

$$\int_B^C \vec{B} \cdot d\vec{l} = \int_D^A \vec{B} \cdot d\vec{l} = \int B dl \cos 90^\circ = 0$$

चूँकि पथ CD परिनालिका के बाहर है, जहाँ \vec{B} शून्य के रूप में लिया जाता है,

$$\text{इसलिए } \int_C^D \vec{B} \cdot d\vec{l} = 0$$

पथ AB के लिए $d\vec{l}$ और \vec{B} समान है अर्थात् $\theta = 0$.

इसलिए समीकरण (i) बन जाता है

$$\oint \vec{B} \cdot d\vec{l} = \int_A^B \vec{B} \cdot d\vec{l} = \int_A^B B dl \cos \theta = \int_A^B B dl$$

$$\oint \vec{B} \cdot d\vec{l} = B \int_A^B dl \quad (\because B \text{ is uniform})$$

$$\oint \vec{B} \cdot d\vec{l} = Bl \left(\because \int_A^B dl = \text{total length of path AB} = l \right) \quad \dots \text{(ii)}$$

ऐम्पियर के परिपथीय नियम के अनुसार,

$$\oint \vec{B} \cdot d\vec{l}$$

$$= \mu_0 \times \text{net current enclosed by loop ABCD}$$

$$= \mu_0 \times \text{number of turns in the loop ABCD} \times I = \mu_0 nI \quad \dots \text{(iii)}$$

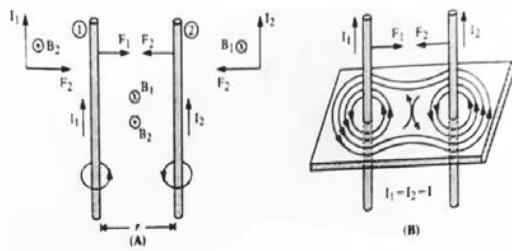
(ii) और (iii) की तुलना करने पर, हमें यह प्राप्त

$$Bl = \mu_0 nI$$

$$B = \mu_0 nI$$

जहाँ $n=N/l$ = प्रति इकाई लंबाई में धूमावों की संख्या ।

N = परिनालिका के धूमावों की कुल संख्या


और l = परिनालिका की लंबाई।

इसलिए

$$B = \frac{\mu_0 NI}{l}$$

Q26: Derive an expression for the force per unit length between two long straight parallel conductors carrying current in the same direction and hence define the unit of current. Is this force attractive or repulsive?

Ans: Consider two infinitely long parallel conductors carrying currents I_1 and I_2 in the same direction. Let r be the perpendicular distance between the two conductors. The current I_1 in the conductor (1) produces a magnetic field around it as shown in Figure .

The magnetic field at any point on the conductor (2) due to current I_1 in conductor (1) is given by

$$B_1 = \frac{\mu_0}{4\pi} \left(\frac{2I_1}{r} \right) \quad \dots \dots \dots \text{(i)}$$

The direction of B_1 , with reference to conductor (2) is perpendicular to the plane of the conductor and is directed vertically downward (i.e. into the plane)..

We know, a current carrying conductor of length l placed at right angle to the magnetic field (B) experiences a force, which is given by

$$F = IBl$$

Therefore, force experienced per unit length of conductor (2) in the magnetic field B_1 is given by

$$F_2 = B_1 I_2 \times 1 = B_1 I_2$$

From equation (1),

$$F_2 = \frac{\mu_0}{4\pi} \left(\frac{2I_1}{r} \right) I_2 = \frac{\mu_0}{4\pi} \left(\frac{2I_1 I_2}{r} \right) \quad \dots \dots \dots \text{(ii)}$$

Applying Fleming's left hand rule to conductor (2), the direction of F_2 is in the plane of the conductors directed towards conductor (1).

Similarly, the force experienced per unit length of conductor (1) in the magnetic field (B_2) due to a current carrying conductor (2) is given by

$$F_1 = \frac{\mu_0}{4\pi} \left(\frac{2I_1 I_2}{r} \right)$$

Applying Fleming's left hand rule to conductor (1), the direction of F_1 lies in the plane of the conductors and is directed towards conductor (2).

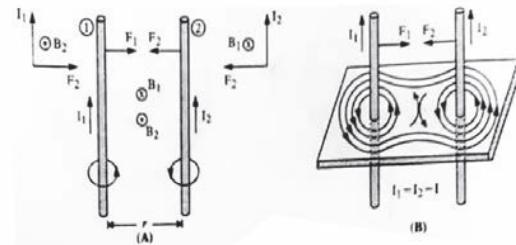
Since F_1 and F_2 are equal and opposite, so these forces pull the two conductors towards each other. Hence, we conclude that two long parallel conductors carrying currents in the same direction attract each other.

Similarly, it can be said that two long parallel current carrying conductors carrying current in opposite directions repel each other.

Definition of ampere

Force experienced per metre length of conductor by two parallel infinitely long straight conductors carrying currents I_1 and I_2 is given by

$$F = \frac{\mu_0}{4\pi} \left(\frac{2I_1 I_2}{r} \right) \text{ Nm}^{-1}$$


if $I_1 = I_2 = 1$ ampere and $r = 1$ m, then

$$F = \frac{4\pi \times 10^{-7}}{4\pi} \times \frac{2 \times 1 \times 1}{1} = 2 \times 10^{-7} \text{ Nm}^{-1}$$

Ampere is that current which if maintained in two infinitely long parallel conductors of negligible cross-sectional area separated by 1 metre in vacuum causes a force of 2×10^{-7} N on each metre of the other wire.

Q26: दो लम्बे सीधे समानान्तर समान दिशा में धारावाही चालकों के मध्य प्रति इकाई लम्बाई पर लगने वाले बल का व्यक्त व्युत्पत्ति कीजिए और और धारा की इकाई को परिभाषित कीजिए। यह बल आकर्षक है या प्रतिरोधक?

उत्तर: किन्हीं दो अनन्त लम्बाई के समानान्तर चालकों, जिनमें I_1 और I_2 , धाराएँ समान दिशा में बह रही हैं, की कल्पना कीजिए।

माना की r दोनों चालकों के मध्य लम्बवत् दूरी है। धारा I_1 के कारण चालक (1) के चारों तरफ चुम्बकीय क्षेत्र उत्पन्न होता है। चालक (1) में I_1 धारा के कारण चालक (2) के किसी भी बिन्दु पर उत्पन्न चुम्बकीय क्षेत्र इस प्रकार दी जाती है।

$$B_1 = \frac{\mu_0}{4\pi} \left(\frac{2I_1}{r} \right) \quad \dots \dots \dots \text{(1)}$$

चालक (2) के सापेक्ष B_1 की दिशा चालक (2) के तल के लम्बवत् होती है और ऊर्ध्वाधर नीचे की ओर होती है। हम जानते हैं, चुम्बकीय क्षेत्र के लम्बवत् रखे धारावाही चालक पर बल इस प्रकार दी जाती है।

$$F = IBl$$

इसलिए चुम्बकीय क्षेत्र B_1 में चालक (2) की प्रति इकाई लम्बाई पर लगने वाला बल इस प्रकार से दी जा सकती है।

$$F_2 = B_1 I_2 \times 1 = B_1 I_2$$

समीकरण (1) से,

$$F_2 = \frac{\mu_0}{4\pi} \left(\frac{2I_1}{r} \right) I_2 = \frac{\mu_0}{4\pi} \left(\frac{2I_1 I_2}{r} \right) \dots \dots \dots \text{(ii)}$$

चालक (2) पर फ्लैमिंग के बाएँ हाथ के नियम के प्रयोग से F_2 की दिशा चालक (1) की ओर है। इसी तरह, धारावाही चालक (2) के कारण चुम्बकीय क्षेत्र B_2 में चालक (1) की प्रति इकाई लम्बाई पर लगने वाला बल इस प्रकार से दी जा सकती है।

$$F_1 = \frac{\mu_0}{4\pi} \left(\frac{2I_1 I_2}{r} \right)$$

चालक (1) पर फ्लैमिंग के बाएँ हाथ के नियम के प्रयोग से F_1 की दिशा चालक (2) की ओर होती है। चूंकि F_1 तथा F_2 समान तथा विपरीत हैं, अतः ये बल दोनों चालकों को एक दूसरे की ओर खींचेंगे।

इससे निर्क्षण निकलता है कि दो लम्बे समानान्तर धारावाही चालक जिनमें समान दिशा में धारा विपरीत दिशा में हो एक दूसरे को आकर्षित करते हैं।

इसी प्रकार से, यह कहा जा सकता है कि दो लम्बे समानान्तर धारावाही चालक जिनमें धारा विपरीत दिशा में हो एक दूसरे को प्रतिकर्षित करते हैं।

एम्पियर की परिभाषा

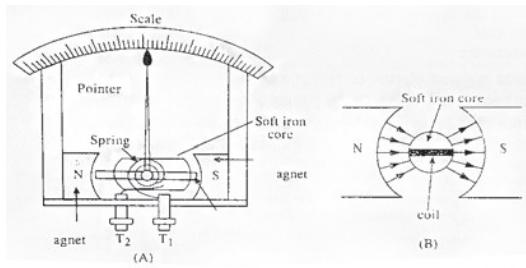
I_1 तथा I_2 धारा के सीधे दो अनन्त लम्बाई के दो समानान्तर चालकों के द्वारा चालक की प्रति मीटर लम्बाई पर लगने वाला बल इस प्रकार से दी जा सकती है।

$$F = \frac{\mu_0}{4\pi} \left(\frac{2I_1 I_2}{r} \right) \text{Nm}^{-1}$$

यदि $I_1 = I_2 = 1$ एम्पियर और $r = 1 \text{ m}$ हो तब

$$F = \frac{4\pi \times 10^{-7}}{4\pi} \times \frac{2 \times 1 \times 1}{1} = 2 \times 10^{-7} \text{ Nm}^{-1}$$

इस प्रकार, एक एम्पियर वह धारा है जो निर्वात में 1 मीटर की दूरी पर रखे नगण्य अनुप्रस्थ काट क्षेत्रफल वाले दो अनन्त लम्बाई के समानान्तर चालकों में प्रवाहित होने पर आपस में एक दूसरे तार को प्रति मीटर लम्बाई पर $2 \times 10^{-7} \text{ N}$ बल उत्पन्न करती है।


Q27: Describe the principle construction and working of a moving coil galvanometer. How can its sensitivity be increased? What is the use of a radial magnetic field?

Ans: Moving Coil Galvanometer is an electric device used to measure or detect small electric current in the electric circuit.

Principle: The moving coil galvanometer works on the principle that when a current carrying loop or coil is placed in a uniform magnetic field, it experiences torque.

Construction: It consists of a coil which is wound on a non-metallic frame. The coil is suspended between the two poles of a permanent magnet which are cylindrical in shape. The coil is suspended by a hair-like spiral spring which acts as a path for the current to the coil also. The terminals T_1 and T_2 of the galvanometer are connected to the ends of the coil. The spring exerts a very small restoring couple on the coil. A piece of soft iron is placed within the

frame of the coil. A plane circular mirror is attached below the pointer to note the deflection of the coil using scale arrangement.

Let B = Intensity of magnetic field

I = Current flowing through the coil

l = Length of coil

b = Breadth of the coil

$(l \times b) = A$ = Area of the coil

N = Number of turns in the coil

Principle

When current flows through the coil, it experiences a torque, which is given by

$$\tau = NIAB \sin\theta$$

Where θ is the angle made by the normal to the plane of the coil with the direction of the magnetic field. If this angle is 90° then $\sin\theta = \sin 90^\circ = 1$. It is possible when cylindrical poles of permanent magnet are used which produce radial magnetic field shown in figure

Then $\tau = NIAB \dots \dots \text{(i)}$

This torque is known as the deflecting torque.

As the coil gets deflected, the spring is twisted and a restoring torque is developed in it. If k is the restoring torque per unit twist then the restoring torque for the deflection α is given by

$$\tau = k\alpha \dots \dots \text{(ii)}$$

For equilibrium of the coil, Deflecting torque = Restoring torque

i.e. $NIAB = k\alpha$

$$I = \frac{k\alpha}{NAB}$$

$$I = G\alpha$$

$$G = \frac{k}{NAB}$$

$$I \propto \alpha$$

Where G is called galvanometer constant.

Thus, deflection of the coil is directly proportional to the current flowing through it. Hence we can use a linear scale in the galvanometer to detect the current in the circuit

Use of Radial Magnetic Field in Moving Coil Galvanometer

A radial magnetic field is generated by the cylindrical poles of the permanent magnet of the galvanometer and is always parallel to the plane of the coil. The torque produced in the galvanometer coil is given by $\tau = NIAB\sin\theta$, throughout the rotation of the coil.

For a radial magnetic field, the angle between the normal to the plane of the loop and the magnetic field will be $\theta = 90^\circ$. Therefore $\tau = NIAB$. Thus, when a radial magnetic field is applied, the deflection of the coil is proportional to the current flowing through it. Hence a linear scale can be used to determine the deflection of the coil.

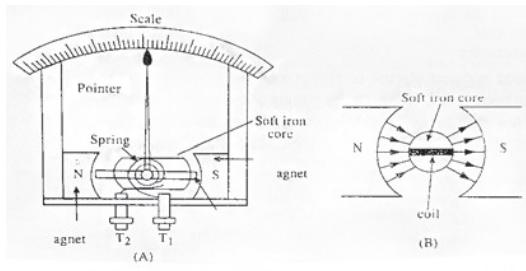
Sensitivity of Galvanometer: A galvanometer is said to be sensitive if a small current flowing through the coil of the galvanometer produces a large deflection in it.

Current sensitivity : The current sensitivity of a galvanometer is defined as the deflection produced in the galvanometer per unit current flowing through it.

$$\text{I.e. Current sensitivity} = \frac{\alpha}{I} = \frac{\alpha(NAB)}{ka} = \frac{NAB}{k}$$

$$\text{since } \left(\because I = \frac{ka}{NAB} \right)$$

Therefore, the current sensitivity of the galvanometer can be increased in the following way.


- (a) By increasing the magnetic field B using a strong permanent horse-shoe magnet.
- (b) By increasing the number of turns N.
- (c) By increasing the area of coil A.
- (d) by decreasing the value of restoring force constant K.

Q27: चल कुण्डली गैल्वेनोमीटर के सिद्धांत निर्माण और कार्यप्रणाली का वर्णन करें। इसकी संवेदनशीलता कैसे बढ़ाई जा सकती है? त्रिज्यीय चुम्बकीय क्षेत्र का क्या महत्व है?

उत्तर: चल कुण्डली गैल्वेनोमीटर (Moving Coil Galvanometer) विद्युत परिपथ में प्रवाहित अल्प विद्युत धारा को मापन करने के लिए प्रयुक्त युक्ति है।

सिद्धांत : चल कुण्डली गैल्वेनोमीटर इस सिद्धांत पर कार्य करता है कि जब एक धारावाही लूप या कुण्डली को समरूप चुम्बकीय क्षेत्र में रखा जाये तो इस पर बल आपूर्ण कार्य करता है।

बनावट : इसमें एक कुण्डली होती है जिसको एक अधातु फ्रेम पर लपेट कर रखा जाता है। कुण्डली को स्थिर चुम्बक के दो ध्रुवों के मध्य लटका कर रखा जाता है जो आकार में बेलनाकार होते हैं। धारामापी के टरमीनल T_1 और T_2 कुण्डली के सिरे से सम्बद्धित होते हैं। स्प्रिंग कुण्डली पर अल्प प्रत्यानयन बल युग्म आरोपित करती है। कोमल लोहे का एक टुकड़ा कुण्डली के फ्रेम के मध्य रखा जाता है।

सिद्धांत

जब धारा कुण्डली से प्रवाहित होती है तो इस पर बल आपूर्ण कार्य करता है जो इस प्रकार दिया जाता है

$$\tau = NIAB \sin\theta$$

जहाँ θ = कुण्डली के तल से अभिलम्ब द्वारा चुम्बकीय क्षेत्र की दिशा से बनाया गया कोण है।

$$B = \text{चुम्बकीय क्षेत्र की तीव्रता}$$

$$I = \text{कुण्डली में प्रवाहित धारा}$$

$$l = \text{कुण्डली की लम्बाई}$$

$$b = \text{कुण्डली की चौड़ाई}$$

$$(l \times b) = A = \text{कुण्डली का क्षेत्रफल}$$

$$N = \text{कुण्डली के फेरों की संख्या}$$

यदि यह कोण 90° है तो $\sin\theta = \sin 90^\circ = 1$ [यह सम्भव है जब स्थिर चुम्बक का बेलनाकार ध्रुव प्रयुक्त किया जाये जो त्रिज्यीय चुम्बकीय क्षेत्र उत्पन्न करता है।]

$$\text{तब } \tau = NIAB \dots \text{(i)}$$

यह बल आधूर्ण विक्षेप आधूर्ण के नाम से जाना जाता है। जैसे ही कुण्डली विक्षेपित होती है, निलम्बित तार में ऐंठन उत्पन्न हो जाती है और प्रत्यानयन बल युग्म उत्पन्न होता है। यदि k प्रत्यानयन बलयुग्म निलम्बन तार की प्रति इकाई ऐंठन पर हो तो α विक्षेप के लिए प्रत्यानयन बलयुग्म इस प्रकार दिया जा सकता है।

$$\tau = ka \dots \text{(ii)}$$

कुण्डली के संतुलन के लिए, विक्षेप आधूर्ण = प्रत्यानयन बलयुग्म

अर्थात् $NIAB = ka$ या

$$I = \frac{ka}{NAB}$$

$$I = G\alpha$$

$$G = \frac{k}{NAB}$$

$$I \propto \alpha$$

जहाँ G को धारा मापी नियतांक कहते हैं।

इस प्रकार, कुण्डली का विक्षेपण इसमें प्रवाहित धारा के सीधे समानुपाती होता है।

चलकुण्डली गैल्वेनोमीटर में त्रिज्यीय चुम्बकीय क्षेत्र का उपयोग (Use of Radial Magnetic Field in Moving Coil Galvanometer)

एक त्रिज्यीय चुम्बकीय क्षेत्र, गैल्वेनोमीटर के स्थायी चुम्बक के बेलनाकार ध्रुवों के द्वारा उत्पन्न होता है तथा यह सदैव चुम्बकीय क्षेत्र की कुण्डली के तल के समानान्तर होता है। धारामापी की कुण्डली में उत्पन्न बल आधूर्ण

$\tau = NIAB \sin \theta$ से दिया जाता है।

त्रिज्यीय चुम्बकीय क्षेत्र के लिए, लूप के तल के अभिलम्ब और चुम्बकीय क्षेत्र के मध्य कोण $\theta = 90^\circ$ होगा।

$\tau = NIAB$

इस प्रकार, जब त्रिज्यीय चुम्बक क्षेत्र प्रयुक्त किया जाता है, कुण्डली का विक्षेप इसमें प्रवाहित धारा के समानुपाती होता है।

(Sensitivity of Galvanometer)

यदि गैल्वेनोमीटर की कुण्डली से प्रवाहित अल्प धारा इसमें अधिक विक्षेप उत्पन्न करे तो गैल्वेनोमीटर अधिक सुग्राही होता है।

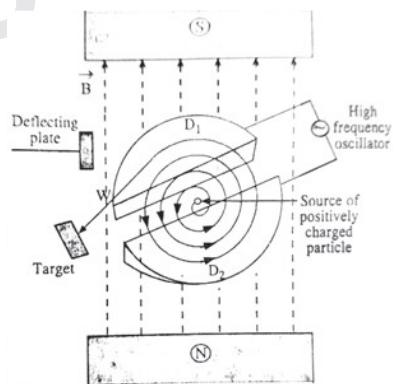
धारा सुग्राहिता : गैल्वेनोमीटर की धारा सुग्राहिता इसमें प्रवाहित प्रति इकाई धारा के कारण उत्पन्न विक्षेप से प्रदर्शित की जाती है। अर्थात्

$$\frac{\alpha}{1} = \frac{\alpha(NAB)}{ka} = \frac{NAB}{k} \quad \left(\because I = \frac{ka}{NAB} \right)$$

अतः गैल्वेनोमीटर की धारा सुग्राहिता में निम्न प्रकार से वृद्धि की जा सकती है।

(a) प्रबल स्थायी हार्स-शू चुम्बक के प्रयोग से चुम्बकीय क्षेत्र B में वृद्धि के द्वारा।

(b) फेरों N की संख्या में वृद्धि के द्वारा।


(c) कुण्डली A के क्षेत्रफल में वृद्धि करके।

(d) प्रतिबल नियतांक K के मान में कमी करके।

Q28: Describe principle construction theory and working of a cyclotron. Why is a cyclotron not suitable for accelerating electrons?

Ans: Cyclotron is a device used to accelerate positively charged particles (like protons, α -particles, deuterons, ions etc.) to acquire enough energy to carry out nuclear disintegrations.

Principle: When a positively charged particle is made to move again and again in a high frequency electric field and using a strong magnetic field, it gets accelerated and acquires a sufficiently large amount of energy.

Construction : It consists of two hollow D-shaped metallic chambers D_1 and D_2 called dees. These dees are separated by a small gap where a source

of positively charged particles is placed. Dees are connected to a high frequency oscillator, which provides a high frequency electric field across the gap of the dees. The particles inside the dees are shielded from electric fields but the magnetic field acts on them and makes them move in circular paths in the dee. Reversal of the polarity of electric oscillations ensures that the particle is always accelerated by the electric field. Radius of the circular path increases with increase in acceleration, so the path of the particle becomes a spiral. This arrangement is placed between two poles of a strong electromagnet. The magnetic field due to this electromagnet is perpendicular to the plane of the dees.

Working: If a positively charged particle (say proton) is emitted from source, when dee D_2 is negatively charged and dee D_1 is positively charged, it will accelerate towards D_2 . As soon as it enters D_2 , it is shielded from the electric field by the metallic chamber. Inside D_2 , it moves at right angle to the magnetic field and hence describes a semi-circle inside it. After completing the semi-circle, it enters the gap between the dees at the time, when polarities of dees have been reversed. Now the proton is further accelerated towards D_1 . Then it enters D_1 , and again describes the semi-circle due to the magnetic field which is perpendicular to the motion of the proton. This process continues till the proton reaches the periphery (i.e., external boundary) of the dee system. At this stage, the proton (or a heavy charged particle) is deflected by the deflecting plate, which then comes out through the window (W) and hits the target.

Theory: When a proton (or other positively charged particle) moves at right angle to the magnetic field (B) inside the dee, magnetic Lorentz force acting on it is given by

$$F = qvB \sin 90^\circ = qvB \quad (q = \text{charge on the particle})$$

This force provides the centripetal force $\frac{mv^2}{r}$ to the charged particle to move in a circular path of radius r .

$$qvB = \frac{mv^2}{r} \quad \text{or} \quad r = \frac{mv}{qB} \quad \dots \dots \dots (i)$$

The time taken by the particle to complete a semicircle inside the dee,

$$t = \frac{\text{Distance}}{\text{Speed}} = \frac{\pi r}{v} \quad \text{or} \quad t = \frac{\pi}{v} \times \frac{mv}{qB}$$

$$\text{or} \quad t = \frac{\pi m}{qB} \quad \dots \dots \dots (ii)$$

This shows that time taken by positively charged particles to complete a semicircle is uniform and does not depend on the radius.

Time Period- Let T be the time period of the high frequency electric field, then the polarities of dees will change after time $T/2$. The particle will be accelerated if time taken by it to describe the semi-circle is equal to $T/2$.

$$\text{i.e. } \frac{T}{2} = t = \frac{\pi m}{qB}$$

or

$$T = \frac{2\pi m}{qB} \quad \dots \dots \dots \text{(iii)}$$

cyclotron frequency (Cyclotron frequency)

$$f = \frac{1}{T} = \frac{qB}{2\pi m} \quad \dots \dots \dots \text{(iv)}$$

Cyclotron angular frequency,

$$\omega = 2\pi f = \frac{qB}{m} \quad \dots \dots \dots \text{(v)}$$

(iii) Energy gained - received by a positively charged particle The energy carried is given as

$$E = \frac{1}{2}mv^2$$

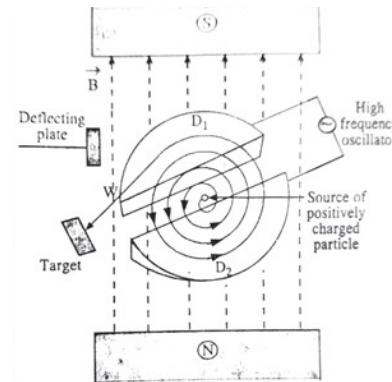
Using equation (i) $v = \frac{qBr}{m}$

$$E = \frac{1}{2}mv^2 = \frac{1}{2}m\left(\frac{qBr}{m}\right)^2 = \frac{q^2 B^2 r^2}{2m} \quad \dots \dots \dots \text{(vi)}$$

The maximum energy obtained by a positively charged particle,

$$E_{\max} = \left(\frac{q^2 B^2}{2m}\right) r_{\max}^2 \quad \dots \dots \dots \text{(vii)}$$

Thus, the positively charged particle will acquire maximum energy, when it is at the periphery of the dees (where, r is maximum).


Cyclotron cannot accelerate electrons because their mass is very small. They move with very high velocities even after receiving low energy in the cyclotron. Also Oscillating electric fields make them go quickly out of phase because of their high speed.

Q28: साइक्लोट्रॉन के सिद्धान्त निर्माण और कार्यप्रणाली का वर्णन करें। इलेक्ट्रॉनों को त्वरित करने के लिए एक साइक्लोट्रॉन उपयुक्त क्यों नहीं है?

उत्तर: साइक्लोट्रॉन-(Cyclotron) : साइक्लोट्रॉन धनावेशित कणों (जैसे प्रोटॉन्स, a -कण, ड्यूट्रॉन आदि) को त्वरित करने में प्रयुक्त युक्ति है जिनको प्रयोग ऊर्जा देकर नाभिकीय विघटनों आदि में प्रयुक्त किया जाता है।

सिद्धान्त - जब किसी धनावेशित कण को उच्च आवृत्ति विद्युत क्षेत्र में प्रबल चुम्बकीय क्षेत्र का प्रयोग करते हुए बार-बार गति कराई जाती है तो यह त्वरित होता है तथा पर्याप्त मात्रा में

अत्यधिक ऊर्जा प्राप्त कर लेता है।

बनावट-यह दो खोखले D-आकृति के धात्विक कक्षों का बना होता है जिन्हें डीज़ (Dees) कहते हैं। इन डीज़ के मध्य कुछ अन्तराल रखा जाता है जिसमें धनावेशित कणों के स्रोत (source) को रखा जाता है। डीज़ को उच्च आवृत्ति दोलक से जोड़ा जाता है जो कि डीज़ के अन्तराल में उच्च आवृत्ति विद्युत क्षेत्र प्रदान करता है। इस व्यवस्था को प्रबल विद्युत चुम्बक के दो ध्रुवों के मध्य रखा जाता है। इस विद्युत चुम्बक के कारण चुम्बकीय क्षेत्र डीज़ के तल के लम्बवत् होता है।

कार्यप्रणाली- यदि O से कोई धनावेशित कण (प्रोटॉन) उत्सर्जित होता है तथा जब D_2 क्षेत्रावेशित होती है व D_1 धनावेशित होती है तो कण D_2 की ओर त्वरित होता है। D_2 में यह चुम्बकीय क्षेत्र के लम्बवत् गति करता है। इसलिए D_2 में यह अर्द्धवृत्ताकार पथ का अनुकरण करता है। अर्द्धवृत्त पूर्ण करने के पश्चात जब डीज़ की ध्रुवता उत्कर्षित (reverse) हो जाती है तो यह डीज़ के मध्य अन्तराल में प्रवेश करता है। अब प्रोटॉन D_1 की ओर त्वरित होता है। अब यह D_1 में प्रवेश करता है तथा चुम्बकीय क्षेत्र के कारण अर्द्धवृत्ताकार पथ का अनुसरण करता है जोकि प्रोटॉन की गति के लम्बवत् होता है। यह प्रक्रिया तब तक चलती रहती है जब तक कि प्रोटॉन डीज़ निकाय की परिधि तक नहीं पहुँच जाए। इस स्थिति में प्रोटॉन (या भारी आवेशित कण) विक्षेपण प्लेट द्वारा विक्षेपित हो जाता है जो कि खिड़की (W) में से होता हुआ लक्ष से टकराता है।

सिद्धान्त- जब कोई प्रोटॉन (अथवा अन्य धनात्मक आवेशित कण) अर्द्धचन्द्र में चुम्बकीय क्षेत्र (B) के लम्बवत् गति करता है तो इस पर कार्यरत् लारेज़ बल

$$F = qvB \sin 90^\circ = qvB \quad (q = \text{कण पर आवेश})$$

यह बल आवेशित कण को r त्रिज्या के वृत्ताकार पथ में गति कराने के लिए अभिकेन्द्रीय बल $\frac{mv^2}{r}$ प्रदान करता है।

$$qvB = \frac{mv^2}{r} \quad \text{or} \quad r = \frac{mv}{qB} \quad \dots \dots \dots \text{(i)}$$

अर्द्धचन्द्र में कण द्वारा अर्द्धवृत्त पूर्ण करने में लगा समय,

$$t = \frac{\text{Distance}}{\text{Speed}} = \frac{\pi r}{v} \quad \text{or} \quad t = \frac{\pi}{v} \times \frac{mv}{qB}$$

$$\text{or} \quad t = \frac{\pi m}{qB} \quad \dots \dots \dots \text{(ii)}$$

इससे यह प्रदर्शित होता है कि धनात्मक आवेशित कण द्वारा अर्द्धवृत्त पूर्ण करने में लगा समय समान होता है तथा त्रिज्या पर निर्भर नहीं करता है।

आवर्तकाल (Time Period)-माना प्रत्यावर्ती विद्युत क्षेत्र का आवर्तकाल T है तो अर्द्धचन्द्रों की धुरणता $T/2$ समय के पश्चात परिवर्तित होगी। यदि किसी कण द्वारा अर्द्धवृत्त पूर्ण करने में लगा समय $T/2$ के बराबर होगा तो कण त्वरित होगा।

$$\text{अर्थात् } \frac{T}{2} = t = \frac{\pi m}{qB}$$

या

$$T = \frac{2\pi m}{qB} \quad \dots \dots \dots \text{(iii)}$$

साइक्लोट्रॉन आवृत्ति (Cyclotron frequency)

$$f = \frac{1}{T} = \frac{qB}{2\pi m} \quad \dots \dots \dots \text{(iv)}$$

साइक्लोट्रॉन कोणीय आवृत्ति,

$$W = 2\pi f = \frac{qB}{m} \quad \dots \dots \dots \text{(v)}$$

(iii) प्राप्त की गई ऊर्जा (Energy gained)- धनात्मक आवेशित कण द्वारा प्राप्त की गई ऊर्जा इस प्रकार दी जाती है।

$$E = \frac{1}{2}mv^2$$

समी० (i) के प्रयोग से

$$v = \frac{qBr}{m}$$

$$E = \frac{1}{2}mv^2 = \frac{1}{2}m\left(\frac{qBr}{m}\right)^2 = \frac{q^2 B^2 r^2}{2m} \quad \dots \dots \dots \text{(vi)}$$

धनात्मक आवेशित कण द्वारा प्राप्त की गई अधिकतम ऊर्जा,

$$E_{max} = \left(\frac{q^2 B^2}{2m}\right) r_{max}^2 \quad \dots \dots \dots \text{(vii)}$$

अतः जब धनात्मक आवेशित कण अर्द्धचन्द्र की परिधि पर होगा (जहाँ r अधिकतम है) तो वह अधिकतम ऊर्जा ग्रहण करेगा।

साइक्लोट्रॉन इलेक्ट्रॉन्स को त्वरित नहीं कर सकता क्योंकि उनके द्रव्यमान बहुत कम हैं। साइक्लोट्रॉन में निम्न ऊर्जा ग्रहण करने पर भी वे बहुत उच्च वेग से गति करते हैं। इसके अलावा दोलनशील विद्युत क्षेत्र उनकी उच्च गति के कारण उन्हें जल्दी से चरण से बाहर कर देते हैं।

वस्तुनिष्ठ प्रश्न

Q1. The magnetic lines of force inside a bar magnet:

- a) do not exist
- b) depends on area of cross-section of bar magnet
- c) are from N-pole to S-pole of the magnet
- d) are from S-pole to N-pole of the magnet.

Ans: (d)

Q1. एक छड़ चुम्बक के अंदर चुम्बकीय बल रेखाएँ:

- a) मौजूद नहीं होती हैं
- b) दंड चुम्बक के अनुप्रस्थ काट के क्षेत्रफल पर निर्भर करता हैं
- c) चुम्बक के N-ध्रुव से S-ध्रुव तक होते हैं
- d) चुम्बक के S-ध्रुव से N-ध्रुव तक होते हैं।

उत्तर- (d)

Q2. A magnetic dipole moment is a vector quantity directed from:

- a) S to N
- b) N to S
- c) E to W
- d) W to E

Ans: (a)

Q2. चुम्बकीय द्विध्रुव आधूर्ण एक सदिश राशि है जिसकी दिशा होती है:

- a) दक्षिण से उत्तर की ओर
- b) उत्तर से दक्षिण की ओर
- c) पूर्व से पश्चिम की ओर
- d) पश्चिम से पूर्व की ओर

उत्तर- (a)

Q3. A magnetic needle is kept in a non-uniform magnetic field. It experiences

- a) a torque but not a force.
- b) Neither a force nor a torque.
- c) a force and a torque.
- d) a force but not a torque.

Ans: (c)

Q3. एक चुम्बकीय सूई को असमान चुम्बकीय क्षेत्र में रखा गया है। यह अनुभव करता है

- a) एक बल आधूर्ण लेकिन बल नहीं।
- b) न तो कोई बल और न ही कोई बल आधूर्ण।
- c) एक बल और एक बल आधूर्ण।
- d) एक बल लेकिन एक बल आधूर्ण नहीं।

उत्तर- (c)

Q4. The angle of dip at poles is:

- a) 0°
- b) 90°

- c) 45°
- d) 180°

Ans: (b)

Q4. ध्रुव पर नती अथवा नमन कोण का मान कितना होता है?

- a) 0°
- b) 90°
- c) 45°
- d) 180°

उत्तर- (b)

Q5. Which of the following materials is the most suitable for making a permanent magnet?

- a) Soft Iron
- b) Nickel
- c) Copper
- d) Steel

Ans: (d)

Q5. स्थायी चुम्बक बनाने के लिए निम्नलिखित में से कौन-सा पदार्थ सर्वाधिक उपयुक्त है?

- a) सॉफ्ट आयरन
- b) निकेल
- c) कॉपर
- d) स्टील

उत्तर- (d)

Q6. For which of the following is magnetic susceptibility negative?

- a) Paramagnetic and Ferromagnetic materials
- b) Paramagnetic Materials only
- c) Ferromagnetic Materials only
- d) Diamagnetic Materials

Ans: (d)

Q6. निम्नलिखित में से किसके लिए चुम्बकीय सुग्राहिता(magnetic susceptibility) ऋणात्मक है?

- a) अनुचुम्बकीय और लौह चुम्बकीय पदार्थ
- b) केवल अनुचुम्बकीय पदार्थ
- c) लौह चुम्बकीय पदार्थ
- d) प्रतिचुम्बकीय पदार्थ

उत्तर- (d)

Q7. A sensitive magnetic field instrument can be effectively shielded from the external magnetic field by placing it inside which of the following materials?

- a) Plastic Material
- b) Wood
- c) Soft Iron of high permeability
- d) A metal of high conductivity

Ans: (c)

Q7. एक संवेदनशील चुम्बकीय क्षेत्र उपकरण को निम्नलिखित में से किस सामग्री के अंदर रखकर बाहरी चुम्बकीय क्षेत्र से प्रभावी रूप से परिरक्षित किया जा सकता है?