CLASS XI BIO CH-11

MCQ Set 3: Photosynthesis in Higher Plants

1.	. Who hypothesized that plants restore to the air w	vhatever	breathing	animals and	burning c	andles
re	emove?					

- a) Jan Ingenhousz
- b) Joseph Priestley
- c) Julius von Sachs
- d) Melvin Calvin
- 2. Ingenhousz showed that sunlight is essential for the process in plants that:
- a) Releases carbon dioxide
- b) Purifies the air
- c) Produces glucose
- d) Forms starch
- 3. Julius von Sachs found that the green substance in plants is located in special bodies called:
- a) Mitochondria
- b) Chloroplasts
- c) Ribosomes
- d) Vacuoles
- 4. The first action spectrum of photosynthesis was described by Engelmann using:
- a) A prism and green alga
- b) A candle and bell jar
- c) KOH and cotton
- d) Radioactive carbon
- 5. The equation 2H₂A+CO₂→Light2A+CH₂O+H₂O was given by:
- a) Melvin Calvin
- b) Cornelius van Niel
- c) Joseph Priestley
- d) Jan Ingenhousz
- 6. The O₂ released during photosynthesis comes from:
- a) Carbon dioxide
- b) Water
- c) Glucose
- d) Minerals
- 7. The number of water molecules used as substrate in the correct photosynthesis equation is:
- a) 6
- b) 12
- c) 18
- d) 24
- 8. Photosynthesis in plants occurs in:
- a) Roots
- b) All green parts

- c) Leaves only
- d) Stem only
- 9. Within the chloroplast, the stroma is the site of:
- a) Light reactions
- b) Sugar synthesis
- c) ATP synthesis
- d) Electron transport
- 10. The light-harvesting complexes are made up of:
- a) Proteins and pigments
- b) Lipids and carbohydrates
- c) Nucleic acids and proteins
- d) Minerals and water
- 11. Which pigment is yellow in the chromatogram?
- a) Chlorophyll a
- b) Chlorophyll b
- c) Xanthophylls
- d) Carotenoids
- 12. The absorption spectrum of chlorophyll a shows peaks in the:
- a) Green and yellow regions
- b) Blue and red regions
- c) Violet and orange regions
- d) Yellow and red regions
- 13. The action spectrum of photosynthesis closely resembles the absorption spectrum of:
- a) Chlorophyll a
- b) Chlorophyll b
- c) Carotenoids
- d) Xanthophylls
- 14. Accessory pigments help in:
- a) Absorbing different wavelengths of light
- b) Splitting water
- c) Fixing carbon dioxide
- d) Releasing oxygen
- 15. The light-harvesting system in photosystems is also called:
- a) Reaction centre
- b) Antennae
- c) Electron transport chain
- d) Cytochrome complex
- 16. The reaction centre chlorophyll a in PS I absorbs light at:
- a) 680 nm
- b) 700 nm
- c) 650 nm
- d) 750 nm

- 17. The reaction centre chlorophyll a in PS II absorbs light at:
 a) 680 nm
 b) 700 nm
 c) 650 nm
 d) 750 nm

 18. The electron acceptor in PS II passes electrons to the:
 a) Electron transport system
 b) PS I directly
 c) Calvin cycle
 d) Water splitting complex

 19. The Z scheme is characterized by its shape on a:
 a) pH scale
- b) Redox potential scale
- c) Temperature scale
- d) Light intensity scale
- 20. The splitting of water is associated with which photosystem?
- a) PS I
- b) PS II
- c) Both PS I and PS II
- d) Neither
- 21. The products of the light reaction that are used in the biosynthetic phase are:
- a) ATP and NADPH
- b) ATP and O₂
- c) NADPH and O₂
- d) CO₂ and H₂O
- 22. The synthesis of ATP in the presence of light is known as:
- a) Photophosphorylation
- b) Photolysis
- c) Photorespiration
- d) Phosphorylation
- 23. Non-cyclic photophosphorylation produces:
- a) ATP only
- b) NADPH only
- c) Both ATP and NADPH
- d) Sugars
- 24. Cyclic photophosphorylation occurs when:
- a) Only PS I is functional
- b) Only PS II is functional
- c) Both PS I and PS II are functional
- d) Neither PS I nor PS II is functional
- 25. The chemiosmotic hypothesis involves the movement of protons across the:
- a) Thylakoid membrane
- b) Mitochondrial membrane

c) Both a and b d) Nuclear membrane
26. The ATP synthase enzyme has two parts: F_0 and F_1 . F_0 is: a) Embedded in the membrane b) Protruding on the outer surface c) Located in the stroma d) Part of the electron transport chain
 27. The biosynthetic phase is also called the dark reaction because it: a) Occurs only in the dark b) Does not directly require light c) Is inhibited by light d) Occurs at night
 28. The first product of CO₂ fixation in the Calvin cycle is: a) 3-phosphoglyceric acid b) Oxaloacetic acid c) Ribulose bisphosphate d) Phosphoenol pyruvate
29. The primary CO_2 acceptor in the Calvin cycle is: a) PEP b) RuBP c) PGA d) OAA
30. The enzyme RuBisCO catalyzes the carboxylation of: a) PEP b) RuBP c) PGA d) OAA
31. For each CO ₂ molecule fixed in the Calvin cycle, the number of ATP and NADPH required is: a) 2 ATP and 2 NADPH b) 3 ATP and 2 NADPH c) 2 ATP and 3 NADPH

32. How many turns of the Calvin cycle are needed to make one glucose molecule?

d) 3 ATP and 3 NADPH

a) Mesophyll anatomyb) Kranz anatomyc) Vascular anatomyd) Bundle anatomy

33. C4 plants have a special leaf anatomy called:

a) 2 b) 6 c) 8 d) 12

a) RUBP b) PEP c) PGA d) OAA
35. The enzyme that fixes CO_2 in the mesophyll cells of C4 plants is: a) RuBisCO b) PEPcase c) ATP synthase d) Cytochrome
36. In C4 plants, the Calvin cycle occurs in the:a) Mesophyll cellsb) Bundle sheath cellsc) Epidermal cellsd) Guard cells
 37. Photorespiration is a process that: a) Produces ATP and NADPH b) Releases CO₂ and consumes ATP c) Fixes carbon dioxide d) Releases oxygen
38. RuBisCO has a higher affinity for CO ₂ when: a) O2 concentration is high b) CO2 concentration is high c) Light intensity is low d) Temperature is low
39. Blackman's Law of Limiting Factors applies when:a) Only one factor affects the processb) Multiple factors affect the processc) Light is the only factord) Temperature is the only factor
40. The factor that is most often limiting for photosynthesis is: a) Light b) Temperature c) CO_2 concentration d) Water
41. Light saturation occurs at what percentage of full sunlight? a) 5% b) 10% c) 50% d) 100%
42. C4 plants show saturation at a CO2 concentration of about:

a) 180 μlL⁻¹b) 360 μlL⁻¹

34. The primary CO_2 acceptor in C4 plants is:

c) 450 μlL ⁻¹ d) 500 μlL ⁻¹
43. C4 plants have a higher temperature optimum than C3 plants because:a) They have Kranz anatomyb) They lack photorespirationc) They use PEPcased) All of the above
 44. Water stress affects photosynthesis by: a) Directly inhibiting the light reactions b) Causing stomatal closure c) Denaturing enzymes d) Breaking down chlorophyll
45. The first product of CO2 fixation in C4 plants is: a) PGA b) OAA c) RuBP d) PEP
46. The number of carbon atoms in the primary CO2 acceptor in C3 plants is: a) 3 b) 4 c) 5 d) 6
47. The number of carbon atoms in the primary CO2 fixation product in C4 plants is: a) 3 b) 4 c) 5 d) 6
48. Photorespiration results in the: a) Synthesis of sugars b) Release of CO2 c) Release of O2 d) Synthesis of ATP
49. The most abundant enzyme in the world is:a) PEPcaseb) ATP synthasec) RuBisCOd) Cytochrome
50. The Hatch and Slack Pathway is another name for the: a) C3 pathway b) C4 pathway c) Calvin cycle d) Photorespiratory pathway

Answer Key for Set 3

- 1. b) Joseph Priestley
- 2. b) Purifies the air
- 3. b) Chloroplasts
- 4. a) A prism and green alga
- 5. b) Cornelius van Niel
- 6. b) Water
- 7. b) 12
- 8. b) All green parts
- 9. b) Sugar synthesis
- 10. a) Proteins and pigments
- 11. c) Xanthophylls
- 12. b) Blue and red regions
- 13. a) Chlorophyll a
- 14. a) Absorbing different wavelengths of light
- 15. b) Antennae
- 16. b) 700 nm
- 17. a) 680 nm
- 18. a) Electron transport system
- 19. b) Redox potential scale
- 20. b) PS II
- 21. a) ATP and NADPH
- 22. a) Photophosphorylation
- 23. c) Both ATP and NADPH
- 24. a) Only PS I is functional
- 25. a) Thylakoid membrane
- 26. a) Embedded in the membrane
- 27. b) Does not directly require light
- 28. a) 3-phosphoglyceric acid
- 29. b) RuBP
- 30. b) RuBP
- 31. b) 3 ATP and 2 NADPH
- 32. b) 6
- 33. b) Kranz anatomy
- 34. b) PEP
- 35. b) PEPcase
- 36. b) Bundle sheath cells
- 37. b) Releases CO2 and consumes ATP
- 38. b) CO2 concentration is high
- 39. b) Multiple factors affect the process
- 40. c) CO2 concentration
- 41. b) 10%
- 42. b) 360 µlL⁻¹
- 43. d) All of the above
- 44. b) Causing stomatal closure
- 45. b) OAA
- 46. c) 5
- 47. b) 4

48. b) Release of CO2

49. c) RuBisCO

50. b) C4 pathway

