

वस्तुनिष्ठ प्रश्न

1. Which of the following properties is not satisfied by an electric charge?
 (a) Total charge conservation.
 (b) Quantization of charge.
 (c) Two types of charge.
 (d) Circular line of force.

1. निम्नलिखित में से कौन सा गुण विद्युत आवेश में नहीं पाया जाता है?
 (a) कुल आवेश संरक्षण।
 (b) आवेश का परिमाणीकरण।
 (c) दो प्रकार के आवेश।
 (d) बल की वृत्तीय रेखा।

Ans. (d)

2. Which one of the following charges is possible?
 (a) $5.8 \times 10^{-18} C$ (b) $3.2 \times 10^{-18} C$
 (c) $4.5 \times 10^{-19} C$ (d) $8.6 \times 10^{-19} C$

2. निम्नलिखित में से कौन सा विद्युत आवेश संभव है?
 (a) $5.8 \times 10^{-18} C$ (b) $3.2 \times 10^{-18} C$
 (c) $4.5 \times 10^{-19} C$ (d) $8.6 \times 10^{-19} C$

Ans. (b)

3. If a charge on a body is 1 nC , then how many excess electrons are present on the body?
 (a) 6.25×10^{27} (b) 1.6×10^{19}
 (c) 6.25×10^{27} (d) 6.25×10^{11}

3. यदि किसी पिंड पर आवेश 1 nC है, तो वस्तु पर कितने अतिरिक्त इलेक्ट्रॉन मौजूद हैं?
 (a) 6.25×10^{27} (b) 1.6×10^{19}
 (c) 6.25×10^{27} (d) 6.25×10^{11}

Ans. (c)

4. Two charges of equal magnitudes kept at a distance r exert a force F on each other, if the Charges are halved and distance between them is doubled then the new force acting on each charge is
 (a) $F/8$ (b) $F/4$
 (c) $4F$ (d) $F/16$

4. दूरी r पर रखे समान परिमाण के दो आवेश एक दूसरे पर F बल लगाते हैं, यदि आवेशों को आधा कर दिया जाता है और उनके बीच की दूरी दोगुनी कर दी जाती है, तो प्रत्येक आवेश पर लगने वाला नया बल है
 (a) $F/8$ (b) $F/4$
 (c) $4F$ (d) $F/16$

Ans. (d)

5. Which one of the following is the SI unit of electric field?
 (a) Coulomb (b) Newton
 (c) Volt (d) N/C

5. निम्नलिखित में से कौन विद्युत क्षेत्र की SI इकाई है?
 (a) Coulomb (b) Newton
 (c) Volt (d) N/C

Ans. (d)

6. When an electric dipole is placed in uniform electric field it experiences
 (a) a net force
 (b) a torque
 (c) both a net force and torque
 (d) neither a net force nor a torque

6. जब एक विद्युत द्विधुक को एकसमान विद्युत क्षेत्र में रखा जाता है तो यह अनुभव करता है
 (a) एक शुद्ध बल
 (b) एक बल आघुण
 (c) एक शुद्ध बल और बल आघुण
 (d) न तो एक शुद्ध बल और न ही बल आघुण

Ans. (b)

7. The force per unit charge is known as
 (a) electric flux (b) electric field
 (c) electric potential (d) electric current

7. बल प्रति यूनिट (आवेश) चार्ज को किस रूप में जाना जाता है
 (a) विद्युत प्रवाह (b) विद्युत क्षेत्र
 (c) विद्युत क्षमता (d) विद्युत धारा

Ans. (b)

8. Two charged spheres are separated by a distance d , exert a force F on each other. If charges are doubled and distance between them is doubled then the force is
 (a) F (b) $F/2$
 (c) $F/4$ (d) $4F$

8. दो आवेश वाले गोले एक दूसरे पर d दूरी पर एक दूसरे पर F बल लगाते हैं। यदि आवेशों को दोगुना कर दिया जाए और उनके बीच की दूरी दोगुनी कर दी जाए तो बल होगा
 (a) F (b) $F/2$
 (c) $F/4$ (d) $4F$

Ans. (a)

9. A positively charged glass rod attracts an object. The object must be
 (a) Negatively charged (b) neutral
 (c) either negatively charged or neutral
 (d) a magnet

9. एक धनावेशित कांच की छड़ किसी वस्तु को आकर्षित करती है। वस्तु होनी चाहिए
 (a) ऋणात्मक चार्ज (b) आवेशहीन
 (c) या तो ऋणात्मक चार्ज या आवेशहीन
 (d) एक चुंबक

Ans. (c)

10. The surface considered for Gauss's law is called
 (a) Closed surface (b) Spherical surface
 (c) Gaussian surface (d) Plane surface

10. गॉस के नियम के लिए उपयोग कि जाने वाली सतह कहलाती है
 (a) बंद सतह (b) गोलाकार सतह
 (c) गॉसियन सतह (d) समतल

Ans. c

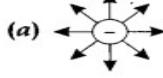
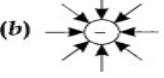
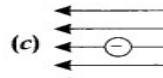
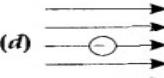
11. If a sphere of bad conductor is given charge then it is distributed on:
 (a) surface
 (b) inside the surface
 (c) only inside the surface
 (d) None

11. यदि कुचालक के गोले को आवेश दिया जाता है तो इसे वितरित किया जाता है:
 (a) पृष्ठ (सतह)
 (b) पृष्ठ (सतह) के अंदर
 (c) केवल सतह के अंदर
 (d) कोई नहीं

Ans. (d)

12. The total flux through the faces of the cube with side of length a if a charge q is placed at corner A of the cube is
 यदि घन के कोने A पर चार्ज q रखा जाता है, तो घन के फलक से कुल विद्युत प्रवाह कितना होगा

(a) $\frac{q}{8\epsilon_0}$ (b) $\frac{q}{4\epsilon_0}$
 (c) $\frac{q}{2\epsilon_0}$ (d) $\frac{q}{\epsilon_0}$





Ans. (a)

13. Electric field lines provide information about
 (a) field strength (b) direction
 (c) nature of charge (d) all of these

13. विद्युत क्षेत्र रेखाएं किसके बारे में जानकारी प्रदान करती हैं
 (a) विद्युत क्षेत्र की तीव्रता (b) दिशा
 (c) आवेश की प्रकृति (d) उप्युक्त सभी

Ans. (d)

14. Which of the following figures represent the electric field lines due to a single negative charge?
 निम्नलिखित में से कौन सा चित्र एकल ऋणात्मक आवेश के कारण विद्युत क्षेत्र रेखाओं का प्रतिनिधित्व करता है?

(a) (b)
 (c) (d)

Ans. (b)

15. The conservation of electric charge implies that:
 (a) Charge can't be created
 (b) Charge can't be destroyed
 (c) The number of charged particle in the universe is constant
 (d) Simultaneous creation of equal and opposite charges is permissible

15. विद्युत आवेश के संरक्षण का तात्पर्य है कि:
 (a) विद्युत आवेश नहीं बनाया जा सकता है
 (b) विद्युत आवेश नष्ट नहीं किया जा सकता है
 (c) ब्रह्माण्ड में आवेशित कणों की संख्या नियत रहती है
 (d) बराबर और विपरीत विद्युत आवेश का एक साथ निर्माण अनुमत है

Ans. (d)

16. The minimum amount of charge observed so far is:
 अब तक पाए गए आवेश की न्यूनतम राशि है:
 (a) 1 C (b) 4.8×10^{-13} C
 (c) 1.6×10^{-19} C (d) 1.6×10^{19} C

Ans. (c)

17. Quantisation of charge implies:
 (a) Charge does not exist
 (b) Charge exists on particles
 (c) There is a minimum permissible magnitude of charge
 (d) Charge can't be created

17. आवेश के क्वांटमीकरण का अर्थ है:
 (a) आवेश मौजूद नहीं है
 (b) कणों पर आवेश होता है
 (c) आवेश की न्यूनतम अनुमेय परिमाण है
 (d) आवेश नहीं बनाया जा सकता है

Ans. (c)

18. Uniform Electric Field is

(a) Conservative
 (b) Non - Conservative
 (c) Somewhere Conservative Somewhere non conservative
 (d) None of above

18. स्थिर विद्युत क्षेत्र है

(a) संरक्षित
 (b) असंरक्षित
 (c) कहीं संरक्षित कहीं असंरक्षित
 (d) उपरोक्त में से कोई नहीं

Ans. (a)

19. An electron and a proton are placed in the same electric field. What will be the ratio of their acceleration

19. एक इलेक्ट्रॉन और एक प्रोटॉन को एक ही विद्युत क्षेत्र में रखा जाता है। उनके त्वरण का अनुपात क्या होगा

(a) Zero (शून्य) (b) 1
 (c) M_p/M_e (d) M_e/M_p

Ans. (c)

20. What is the ratio of Electrostatic force and Gravitational Force between two electrons placed at certain distance

20. निश्चित दूरी पर रखे दो इलेक्ट्रॉनों के बीच स्थिर विद्युत बल तथा गुरुत्वीय बल का अनुपात क्या होता है?

(a) 4×10^{52} (b) 10^{38}
 (c) 2×10^{32} (d) 4×10^{38}

Ans. (a)

Subjective Question (विषयनिष्ठ प्रश्न)

Q.1. Which orientation of an electric dipole in a uniform electric field would correspond to stable equilibrium?

Ans- When dipole moment vector is parallel to electric field vector

$$\vec{P} \parallel \vec{E}$$

प्रश्न 1 एकसमान विद्युत क्षेत्र में विद्युत द्विध्रुव का कौन-सा स्थिति स्थिर संतुलन के अनुरूप होगा?

उत्तर- जब द्विध्रुव आधूर्ण, विद्युत क्षेत्र के समान्तर होता है।

$$\vec{P} \parallel \vec{E}$$

Q.2. If the radius of the Gaussian surface enclosing a charge is halved, how does the electric flux through the Gaussian surface change?

Ans- Electric flux ϕ_e is given by

$$\phi_e = \vec{E} \cdot \vec{ds} = Q / \epsilon_0$$

where [Q is total charge inside the closed surface

\therefore On changing the radius of sphere, the electric flux through the Gaussian surface remains same.

प्रश्न 2 यदि किसी आवेश को धरने वाली गाऊसी सतह की त्रिज्या आधी कर दी जाए, तो गाऊसी सतह से होकर गुजरने वाला विद्युत फ्लक्स कैसे बदल जाएगा?

उत्तर. विद्युत प्रवाह ϕ द्वारा दिया जाता है

$$\phi_e = \vec{E} \cdot \vec{ds} = Q / \epsilon_0$$

जहां [Q बंद सतह के अंदर कुल चार्ज है]

\therefore गोले की त्रिज्या बदलने पर गॉसियन सतह से गुजरने वाला विद्युत फ्लक्स समान रहता है।

Q.3. Define the term electric dipole moment of a dipole. State its S.I. unit

Ans: $\vec{p} = pE \sin \theta$

If $E = 1$ unit, $\theta = 90^\circ$, then $\vec{p} = p$

Dipole moment may be defined as the torque acting on an electric dipole, placed perpendicular to a uniform electric field of unit strength is called dipole moment.

$$|\vec{p}| = q |2\vec{a}|$$

\therefore SI unit is Cm.

प्रश्न 3 विद्युत द्विध्रुव आधूर्ण को परिभाषित कीजिए। इसकी S.I. इकाई बताइए

उत्तर. $\vec{p} = PE \sin \theta$

यदि $E = 1$ इकाई, $\theta = 90^\circ$, तो $\vec{p} = p$

द्विध्रुवीय क्षण को एक विद्युत द्विध्रुव पर लगने वाले करने वाले बल आधूर्ण के रूप में परिभाषित किया जा सकता है, जो इकाई शक्ति के एक समान विद्युत क्षेत्र के लंबवत रखा जाता है, जिसे द्विध्रुवीय आधूर्ण कहा जाता है।

$$|\vec{p}| = q |2\vec{a}|$$

\therefore SI इकाई Cm है।

Q.4. In which orientation, a dipole placed in a uniform electric field is in (A) stable, (B)unstable equilibrium?

Ans. For stable equilibrium, a dipole is placed parallel to the electric field. For unstable equilibrium, a dipole is placed antiparallel to the electric field.

प्रश्न 4 किस स्थिति में, एक समान विद्युत क्षेत्र में रखा गया एक द्विध्रुव (ए) स्थिर, (बी) अस्थिर संतुलन में है?

उत्तर. स्थिर संतुलन के लिए, एक द्विध्रुव को विद्युत क्षेत्र के समानांतर रखा जाता है। अस्थिर संतुलन के लिए, एक द्विध्रुव को विद्युत क्षेत्र के प्रतिसमान रखा जाता है।

Q.5. Name the physical quantity whose S.I. unit is NC^{-1} . Is it a scalar or a vector quantity?

Ans- Electric Field. It is a vector quantity.

प्रश्न 5 उस भौतिक राशि का नाम बताइए जिसका S.I. मात्रक NC^{-1} है। क्या यह एक अदिश या सदिश राशि है?

उत्तर- विद्युत क्षेत्र यह एक सदिश राशि है।

Q.6. Why should the electrostatic field be zero inside a conductor?

Ans- Electrostatic field inside a conductor should be zero because of the absence of charge. As in a static condition, charge remains only on the surface.

प्रश्न 6 सुचालक (कंडक्टर) के अंदर इलेक्ट्रोस्टैटिक क्षेत्र (स्थिर वैद्युत क्षेत्र) शून्य क्यों होना चाहिए?

उत्तर- आवेश की अनुपस्थिति के कारण किसी चालक के भीतर स्थिर वैद्युत क्षेत्र शून्य होना चाहिए। स्थिर स्थिति में, आवेश केवल सतह पर ही रहता है।

Q.7. Why must the electrostatic field be normal to the surface at every point of a charged conductor?

Ans- So that tangent on a charged conductor gives the direction of the electric field at that point.

प्रश्न 7 एक आवेशित चालक के प्रत्येक बिंदु पर स्थिर वैद्युत क्षेत्र पृष्ठ के लम्बवत् क्यों होना चाहिए?

उत्तर- ताकि आवेशित चालक पर स्पर्श रेखा उस बिंदु पर विद्युत क्षेत्र की दिशा बताए।

Q.8. A charge 'q' is placed at the center of a cube of side l. What is the electric flux passing through each face of the cube?

Ans- Electric flux through each face of the cube = $(q/6\epsilon_0)$

प्रश्न 8 एक आवेश 'q' को भूमा के घन के केंद्र में रखा गया है। घन के प्रत्येक फलक से गुजरने वाला विद्युत फ्लक्स क्या है?

उत्तर- घन के प्रत्येक फलक के माध्यम से विद्युत प्रवाह = $(q/6\epsilon_0)$

Q.9. Why do the electric field lines not form closed loops?

Ans- Electric field lines do not form closed loops because the direction of an electric field is from positive to negative charge. So one can regard a line of force starting from a positive charge and ending on a negative charge. This indicates that electric field lines do not form closed loops.

प्रश्न 9 विद्युत क्षेत्र रेखाएँ बंद लूप क्यों नहीं बनाती हैं?

उत्तर- विद्युत क्षेत्र रेखाएँ बंद लूप नहीं बनाती हैं क्योंकि विद्युत क्षेत्र की दिशा धनात्मक से ऋणात्मक आवेश की ओर होती है। तो विद्युतक्षेत्र की रेखा को धनात्मक आवेश से शुरू होने वाली और ऋणात्मक आवेश पर समाप्त होने वाली मान सकता है। यह इंगित करता है कि विद्युत क्षेत्र रेखाएँ बंद लूप नहीं बनाती हैं।

Q.10 Why do the electric field lines never cross each other?

Ans- The electric lines of force give the direction of the electric field. In case two lines of force intersect, there will be two directions of the electric field at the point of intersection, which is not possible.

प्रश्न 10 विद्युत क्षेत्र रेखाएँ कभी एक दूसरे को काटती क्यों नहीं हैं?

उत्तर- विद्युत क्षेत्र रेखाएँ विद्युत क्षेत्र की दिशा बताती हैं। यदि बल की दो रेखाएँ प्रतिच्छेद करती हैं, तो प्रतिच्छेदन बिंदु पर विद्युत क्षेत्र की दो दिशाएँ होंगी, जो संभव नहीं हैं।

Q.11. What is the electric flux through a cube of side 1 cm which encloses an electric dipole?

Ans- Zero because the net charge of an electric dipole ($+q$ and $-q$) is zero.

प्रश्न 11 1 cm भुजा वाले घन से होकर गुजरने वाला वैद्युत फ्लक्स क्या है जो एक विद्युत द्विधुव को परिवर्द्ध करता है?

उत्तर- शून्य क्योंकि एक विद्युत द्विधुव ($+q$ और $-q$) का कुल आवेश शून्य होता है।

Q.12. How does the electric flux due to a point charge enclosed by a spherical Gaussian surface get affected when its radius is increased?

Ans- The electric flux due to a point charge enclosed by a spherical gaussian surface remains 'unaffected' when its radius is increased.

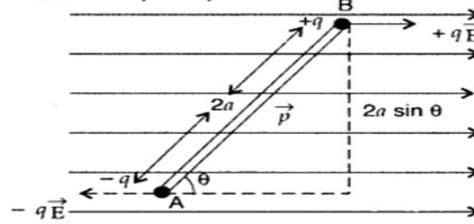
प्रश्न 12 गोलाकार गॉसियन सतह से घिरे एक बिंदु आवेश के कारण विद्युत प्रवाह इसकी त्रिज्या बढ़ाने पर कैसे प्रभावित होता है?

उत्तर- एक गोलाकार गॉसियन सतह से घिरे बिंदु आवेश के कारण विद्युत प्रवाह इसकी त्रिज्या बढ़ाने पर 'अप्रभावित' रहता है।

Q.13. Derive an expression for the torque experienced by an electric dipole kept in a uniform electric field.

Ans- Consider an electric dipole consisting of charges $+q$ and $-q$ and of length $2a$ placed in a uniform electric field \vec{E} making an angle θ with it. It has a dipole moment of magnitude,

$$p = q \times 2a$$


Force exerted on charge $+q$ by field,

$$\vec{F} = q\vec{E} \text{ (along } \vec{E})$$

Force exerted on charge $-q$ by field,

$$\vec{F} = q\vec{E} \text{ (opposite to } \vec{E})$$

$$\therefore \vec{F}_{\text{total}} = +q\vec{E} - q\vec{E} = 0$$

Hence the net translating force on a dipole in a uniform electric field is zero. But the two equal and opposite forces act at different points of the dipole. They form a couple which exerts a torque.

Torque = Either force \times Perpendicular distance between the two forces

$$\tau = qE \times 2a \sin \theta$$

$$\tau = pE \sin \theta [\because p = q \times 2a; p \text{ is dipole moment}]$$

As the direction of torque τ is perpendicular to \vec{p}

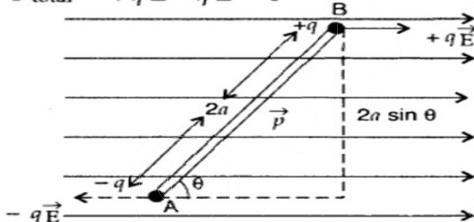
and \vec{E} , so we can write $\vec{\tau} = \vec{p} \times \vec{E}$

प्रश्न 13 एक समान वैद्युत क्षेत्र में रखे वैद्युत द्विधुर द्वारा अनुभूत बल आधूर्ण के लिए अंतर्क व्युत्पत्ति कीजिए।

उत्तर: एक वैद्युत द्विधुर पर विचार करें जिसमें आवेश $+q$ और $-q$ और लंबाई $2a$ है, जो एक समान वैद्युत क्षेत्र \vec{E} में इसके साथ कोण θ बनाते हुए रखा गया है।

यहाँ वैद्युत द्विधुरीय आधूर्ण का परिमाण है

$$p = q \times 2a$$


Force exerted on charge $+q$ by field,

$$\vec{E} = q \vec{E} \text{ (along } \vec{E})$$

Force exerted on charge $-q$ by field,

$$\vec{E} = q \vec{E} \text{ (opposite to } \vec{E})$$

$$\therefore \vec{F}_{\text{total}} = +q \vec{E} - q \vec{E} = 0$$

इसलिए एक समान वैद्युत क्षेत्र में द्विधुर पर कुल ट्रांसलेटिंग बल शून्य होता है। लेकिन दो समान और विपरीत बल द्विधुर के विभिन्न बिंदुओं पर कार्य करते हैं। वे एक युगल बनाते हैं जो एक बलाधूर्ण लगाता है।

बल आधूर्ण = एक बल \times दोनों बलों के बीच लंबवत दूरी

$$\tau = qE \times 2a \sin \theta$$

$$\tau = pE \sin \theta [\because p = q \times 2a; p \text{ द्विधुर आधूर्ण है}]$$

चूंकि टार्क τ की दिशा \vec{p} और \vec{E} के लंबवत है, इसलिए हम

$$\vec{\tau} = \vec{p} \times \vec{E} \text{ लिख सकते हैं}$$

Q.14. Define electric flux. Write its S.I. unit. A charge q is enclosed by a spherical surface of radius R . If the radius is reduced to half, how would the electric flux through the surface change?

Ans: Electric flux over an area in an electric field is the total number of lines of force passing through the area. It is represented by ϕ . It is a scalar quantity. Its S.I. unit is $\text{Nm}^2 \text{C}^{-1}$ or Vm .

Electric flux ϕ when q charge is enclosed

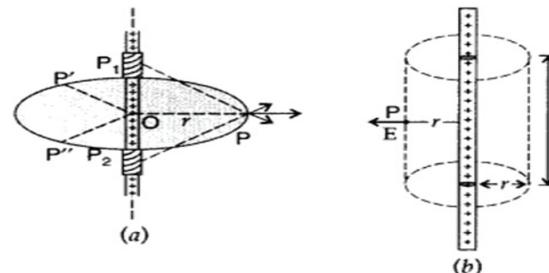
$$\text{i.e., } \phi = \int \vec{E} \cdot d\vec{s} = \frac{q}{\epsilon_0}$$

Hence the electric flux through the surface of the sphere remains the same.

प्रश्न 14 वैद्युत प्रवाह को परिभाषित कीजिए। इसका S.I. मात्रक लिखें। एक आवेश q विज्या R की एक गोलाकार सतह से घिरा है। यदि विज्या को घटाकर आधा कर दिया जाए, तो सतह के माध्यम से वैद्युत प्रवाह कैसे बदलेगा?

उत्तर: एक वैद्युत क्षेत्र में एक क्षेत्र पर वैद्युत प्रवाह क्षेत्र के माध्यम से गुजरने वाली बल की रेखाओं की कुल संख्या है। इसे ϕ द्वारा दर्शाया जाता है। यह एक अदिश राशि है। इसका S.I. मात्रक $\text{Nm}^2 \text{C}^{-1}$ या Vm है।

$$\text{i.e., } \phi = \int \vec{E} \cdot d\vec{s} = \frac{q}{\epsilon_0}$$


वैद्युत प्रवाह ϕ जब आवेश q बंद सतह से घिरा हो अतः गोले की सतह से गुजरने वाला विद्युत फ्लक्स समान रहता है।

Q.15. A thin straight infinitely long conducting wire having charge density λ is enclosed by a cylindrical surface of radius r and length l , its axis coinciding with the length of the wire. Find the expression for the electric flux through the surface of the cylinder.

Ans- Since the field is radial everywhere, flux through the two ends of the cylindrical Gaussian surface is zero. At the cylindrical part of the surface, E is normal to the surface at every point, and its magnitude is constant, since it depends only on r . The surface area of the curved part is $2\pi rl$, where l is the length of the cylinder.

Flux through the curved cylindrical part of the surface is zero. At the cylindrical part of the surface, E is normal to the surface at every point, and its magnitude is constant, since it depends only on r .

Flux through the Gaussian surface = Flux through the curved cylindrical part of the surface = $E \times 2\pi rl$

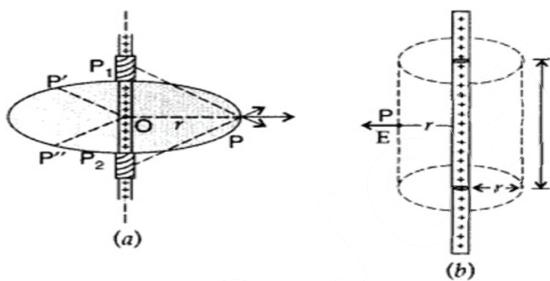
(a) Electric field due to an infinitely long thin straight wire is radial.

(b) The Gaussian surface for a long thin wire of uniform linear charge density

The surface includes a charge equal to λl .

Gauss's law then gives

$$E \times 2\pi rl = \lambda l / \epsilon_0$$


$$E = \frac{\lambda}{2\pi\epsilon_0 r}$$

प्रश्न 15 एक पतले सीधे असीम रूप से लंबे तार का चार्ज घनत्व λ है, जो त्रिज्या r और लंबाई l की एक बेलनाकार सतह से घिरा है, इसकी धूरी तार की लंबाई के साथ मेल खाती है। बेलन की सतह से गुजरने वाले विद्युत फ्लक्स के लिए व्यंजक ज्ञात कीजिए।

उत्तर- चूंकि क्षेत्र हर जगह त्रिजार्ड (रेडियल) है, बेलनाकार गॉसियन सतह के दोनों सिरों के माध्यम से प्रवाह शून्य है। सतह के बेलनाकार भाग पर, E प्रत्येक बिंदु पर सतह के लिए सामान्य है, और इसका परिमाण नियत है, क्योंकि यह केवल R पर निर्भर करता है। धूमावदार भाग का पृष्ठीय क्षेत्रफल $2\pi rl$ है, जहाँ R बेलन की लंबाई है।

सतह के धूमावदार बेलनाकार भाग के माध्यम से प्रवाह शून्य है। सतह के बेलनाकार भाग पर, E प्रत्येक बिंदु पर सतह पर अभिलम्ब है, और इसका परिमाण स्थिर है, क्योंकि प्रत्येक बिंदु पर, और इसका परिमाण स्थिर है, क्योंकि यह केवल R पर निर्भर करता है।

गॉसियन सतह के माध्यम से प्रवाह = सतह के धूमावदार बेलनाकार भाग के माध्यम से प्रवाह = $E \times 2\pi rl$

(a) असीमित लंबे पतले सीधे तार के कारण विद्युत क्षेत्र रेडियल है।

(b) समान रैखिक चार्ज घनत्व के लंबे पतले तार के लिए गॉसियन सतह में λl के बराबर चार्ज शामिल है।

गॉस का नियम तब देता है

$$E \times 2\pi rl = \lambda l / \epsilon_0$$

$$E = \frac{\lambda}{2\pi\epsilon_0 r}$$

Q.16. Given a uniform electric field $\vec{E} = 5 \times 10^3 \hat{i}$ N/C, find the flux of this field through a square of side 10 cm, whose plane is parallel to the y-z plane. What would be the flux through the same square, if the plane makes an angle of 30° with the x-axis?

Ans. Given: $\vec{E} = 5 \times 10^3 \hat{i}$ N/C

$$A = 10 \times 10 \times 10^{-4} \text{ m}^2$$

$$\text{Flux } (\phi) = EA \cos \theta$$

(i) For first case, $\theta = 0, \cos 0 = 1$

$$\therefore \text{Flux} = (5 \times 10^3) \times (10 \times 10 \times 10^{-4})$$

$$= 50 \text{ Nm}^2 \text{ C}^{-1}$$

(ii) Angle of square plane with x-axis = 30°

Hence the θ will be $90^\circ - 30^\circ = 60^\circ$

$$EA \cos \theta = (5 \times 10^3) \times (10 \times 10 \times 10^{-4}) \times \cos 60^\circ$$

$$= 50 \times 1/2$$

$$= 25 \text{ Nm}^2 \text{ C}^{-1}$$

प्रश्न 16 एक समान विद्युत क्षेत्र $\vec{E} = 5 \times 10^3 \hat{i}$ N/C दिया गया है, इस क्षेत्र का प्रवाह 10 सेमी के वर्ग के माध्यम से खोजें, जिसका सतह yz सतह के समानांतर है। यदि तल x -अक्ष से 30° का कोण बनाता है, तो उसी वर्ग से होकर गुजरने वाला फ्लक्स क्या होगा?

उत्तर- दिया है: $\vec{E} = 5 \times 10^3 \hat{i}$ N/C

$$A = 10 \times 10 \times 10^{-4} \text{ m}^2$$

$$\text{फ्लक्स } (\phi) = EA \cos \theta$$

$$(i) \text{ पहली स्थिति के लिए, } \theta = 0, \cos 0 = 1$$

$$\therefore \text{फ्लक्स} = (5 \times 10^3) \times (10 \times 10 \times 10^{-4})$$

$$= 50 \text{ Nm}^2 \text{ C}^{-1}$$

$$(ii) x\text{-अक्ष के साथ वर्गाकार तल का कोण} = 30^\circ$$

$$\text{इसलिए } \theta \text{ होगा} 90^\circ - 30^\circ = 60^\circ$$

$$EA \cos \theta = (5 \times 10^3) \times (10 \times 10 \times 10^{-4}) \times \cos 60^\circ$$

$$= 50 \times 1/2$$

$$= 25 \text{ Nm}^2 \text{ C}^{-1}$$

Q.17. An electric dipole is placed in a uniform electric field \vec{E} with its dipole moment \vec{P} parallel to the field. Find

(i) the work done in turning the dipole till its dipole moment points in the direction opposite to \vec{E} .

(ii) the orientation of the dipole for which the torque acting on it becomes maximum.

Ans- (i) $W = \int_{\theta_1}^{\theta_2} \tau d\theta$	$W = \int_0^{\pi} pE \sin \theta d\theta$
$W = pE[-\cos \theta]_0^\pi$	$W = pE[\cos \pi - \cos 0]$
$W = pE[(-1) - (1)]$	$W = -2pE$

$$(ii) |\tau| = |\vec{P} \times \vec{E}| = pE \sin \theta$$

For $\theta = \pi/2, \sin \theta = 1$ and τ is maximum

प्रश्न 17. एक विद्युत द्विधुव को एकसमान विद्युत क्षेत्र \vec{E} में इसके द्विधुव आधूर्ण \vec{P} क्षेत्र के समांतर रखा गया है। जात करें

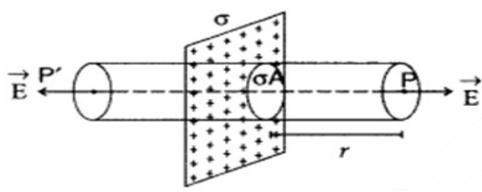
(i) किया गया कार्य जब द्विधुव को धुमाया जाता है जबतक उसके द्विधुव आधूर्ण की दिशा \vec{E} के विपरीत न हो जाये।

(ii) द्विधुव का अभिविन्यास जिसके लिए उस पर लगने वाला बल आधूर्ण अधिकतम हो जाता है।

उत्तर- (i) $W = \int_{\theta_1}^{\theta_2} \tau d\theta$	$W = \int_0^{\pi} pE \sin \theta d\theta$
$W = pE[-\cos \theta]_0^\pi$	$W = pE[\cos \pi - \cos 0]$
$W = pE[(-1) - (1)]$	$W = -2pE$

एक विद्युत द्विधुव को एकसमान विद्युत क्षेत्र \vec{E} में इसके

$$(ii) |\vec{\tau}| = |\vec{P} \times \vec{E}| = pE \sin \theta$$


$\theta = \pi/2$ के लिए, $\sin \theta = 1$ और τ अधिकतम है

Q.18. State Gauss' law in electrostatics. Using this law derives an expression for the electric field due to a uniformly charged infinite plane sheet.

Ans. Gauss' Law states that "the total flux through a closed surface is $1/\epsilon_0$ times the net charge enclosed by it

$$\phi_E = \oint \vec{E} \cdot d\vec{s} = \frac{q}{\epsilon_0}$$

Let σ be the surface charge density (charge per unit area) of the given sheet and let P be a point at distance r from the sheet where we have to find \vec{E}

Choosing point P' , symmetrical with P on the other side of the sheet, let us draw a Gaussian cylindrical surface cutting through the sheet as shown in the diagram. As at the cylindrical part of the Gaussian surface, \vec{E} and $d\vec{s}$ are at a right angle, the only surfaces having \vec{E} and $d\vec{s}$ parallel are the plane ends

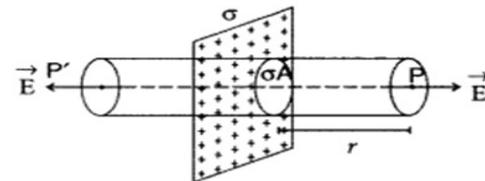
$$\begin{aligned} \therefore \phi_E &= \oint \vec{E} \cdot d\vec{s} + \oint \vec{E} \cdot d\vec{s} \\ &= \oint Eds + \oint Eds = EA + EA = 2EA \end{aligned}$$

[As E is outgoing from both plane ends, the flux is positive.]

This is the total flux through the Gaussian surface.

$$\text{Using Gauss' law, } \phi_E = \frac{q}{\epsilon_0}$$

$$\begin{aligned} \therefore 2EA &= \frac{q}{\epsilon_0} = \frac{\sigma A}{\epsilon_0} \\ \therefore E &= \frac{\sigma}{2\epsilon_0}. \end{aligned} \quad \dots [\text{As } q = \sigma A]$$


This value is independent of r . Hence, the electric field intensity is the same for all points near the charged sheet.

प्रश्न 18. इलेक्ट्रोस्टैटिक्स में गॉस का नियम बताएं। इस नियम का प्रयोग करते हुए एक समान रूप से आवेशित अनन्त समतल शीट के कारण विद्युत क्षेत्र के लिए एक व्यंजक व्युत्पन्न कीजिए।

उत्तर: गॉस के नियम में कहा गया है कि 'एक बंद सतह के माध्यम से कुल विद्युत प्रवाह $1/\epsilon_0$ गुणा होता है सतह के अन्दर बंद आवेश के "

$$\phi_E = \oint \vec{E} \cdot d\vec{s} = \frac{q}{\epsilon_0}$$

मान लीजिए σ दी गई शीट का पृष्ठीय आवेश घनत्व (चार्ज प्रति यूनिट क्षेत्रफल) है और P शीट से दूरी r पर एक बिंदु है जहाँ हमें \vec{E} खोजना है।

बिंदु P' का चयन, शीट के दूसरी तरफ P के साथ सममित किया गया है, आइए चित्र में दिखाए अनुसार शीट के माध्यम से एक गॉसियन बेलनाकार सतह को काटें। गॉसियन सतह के बेलनाकार भाग के रूप में, \vec{E} और $d\vec{s}$ एक समकोण पर हैं, \vec{E} और $d\vec{s}$ समानांतर वाली एकमात्र सतहें समतल सिरे हैं।

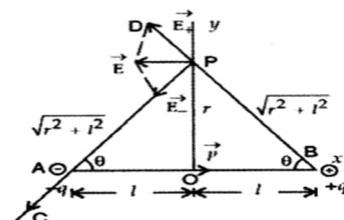
$$\begin{aligned} \therefore \phi_E &= \oint \vec{E} \cdot d\vec{s} + \oint \vec{E} \cdot d\vec{s} \\ &= \oint Eds + \oint Eds = EA + EA = 2EA \end{aligned}$$

[चूंकि E दोनों समतल सिरों से बाहर जा रहा है, फलक्स धनात्मक है।]

यह गॉसियन सतह के माध्यम से कुल प्रवाह है।

$$\text{Using Gauss' law, } \phi_E = \frac{q}{\epsilon_0}$$

$$\therefore 2EA = \frac{q}{\epsilon_0} = \frac{\sigma A}{\epsilon_0} \quad \dots [\text{As } q = \sigma A]$$


$$\therefore E = \frac{\sigma}{2\epsilon_0}.$$

यह मान r से स्वतंत्र है। इसलिए, चार्ज (आवेशित) शीट के पास सभी बिंदुओं के लिए विद्युत क्षेत्र की तीव्रता समान होती है।

Q.19. (i) Derive the expression for an electric field at a point on the equatorial line of an electric dipole.
(ii) Depict the orientation of the dipole in
(a) stable equilibrium in a uniform electric field
(b) unstable equilibrium in a uniform electric field.

Ans. (i) Electric dipole moment: It is the product of the magnitude of either charge and distance between them.

It is a vector quantity whose direction is from negative to positive charge.

Expression :

Electric field intensity at P due to $+q$ charge is

$$\begin{aligned}\vec{E}_+ &= \frac{1}{4\pi\epsilon_0} \frac{q}{BP^2} \text{ along PD} \\ &= \frac{1}{4\pi\epsilon_0} \frac{q}{(r^2 + l^2)} \text{ along PD} \dots(i)\end{aligned}$$

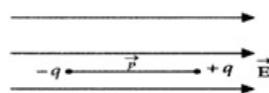
Electric field intensity at P due to $-q$ charge is,

$$\begin{aligned}\vec{E}_- &= \frac{1}{4\pi\epsilon_0} \frac{q}{AP^2} \text{ along PC} \\ &= \frac{1}{4\pi\epsilon_0} \frac{q}{(r^2 + l^2)} \text{ along PC} \dots(ii)\end{aligned}$$

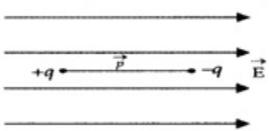
From (i) and (ii), $|\vec{E}_+| = |\vec{E}_-| = \frac{1}{4\pi\epsilon_0} \frac{q}{(r^2 + l^2)}$... (iii)

Net electric field intensity due to the electric dipole at point P

$$\begin{aligned}\therefore E &= \sqrt{E_+^2 + E_-^2 + 2E_+ E_- \cos 2\theta} \\ \Rightarrow E &= \sqrt{E_+^2 + E_-^2 + 2E_+^2 \cos 2\theta} \quad (\because E_- = E_+) \\ \Rightarrow E &= \sqrt{2E_+^2 + 2E_+^2 \cos 2\theta} \\ \Rightarrow E &= \sqrt{2E_+^2(1 + \cos 2\theta)} \\ \Rightarrow E &= \sqrt{2E_+^2 2\cos^2 \theta} \quad (\because 1 + \cos 2\theta = 2\cos^2 \theta) \\ \therefore E &= 2E_+ \cos \theta = 2 \times \frac{1}{4\pi\epsilon_0} \frac{q}{(r^2 + l^2)} \cos \theta \\ &\quad [\text{Using equation (iii)}]\end{aligned}$$


Now from ΔOAP , $\cos \theta = \frac{l}{\sqrt{r^2 + l^2}}$

$$\begin{aligned}E &= 2 \times \frac{1}{4\pi\epsilon_0} \frac{q}{(r^2 + l^2)} \times \frac{l}{(r^2 + l^2)^{1/2}} \\ \Rightarrow E &= \frac{q \times 2l}{4\pi\epsilon_0 (r^2 + l^2)^{3/2}}\end{aligned}$$


Since $q \times 2l = p$... (p is dipole moment)

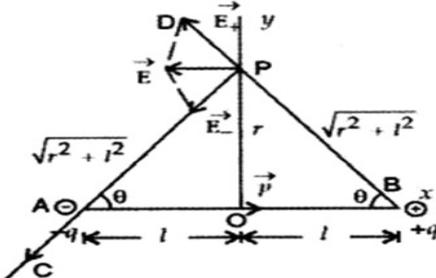
$$\vec{E} = \frac{-\vec{p}}{4\pi\epsilon_0 r^3} \quad (\text{for very small dipole, } r^2 \gg l^2)$$

(ii) (a) For stable equilibrium, the angle between p and E is 0° ,

(b) For unstable equilibrium, the angle between p and E is 180° ,

(b) For unstable equilibrium, the angle between p and E is 180°

प्रश्न 19. (i) वैद्युत द्विध्रुव की विषुवतीय रेखा के किसी बिन्दु पर विद्युत क्षेत्र के लिए व्यंजक व्युत्पन्न कीजिए।


(ii) द्विध्रुव के अभिविन्यास को निरूपित करें

(a) एक समान विद्युत क्षेत्र में स्थिर संतुलन होने पर,

(b) एक समान विद्युत क्षेत्र में अस्थिर संतुलन होने पर।

उत्तर- वैद्युत द्विध्रुव आधुर्णः यह किसी एक आवेश के परिमाण और उनके बीच की दूरी का गुणनफल होता है।

यह एक सदिश राशि है जिसकी दिशा क्रणात्मक से धनात्मक आवेश की ओर होती है।

Expression :

$+q$ आवेश के कारण P पर विद्युत क्षेत्र की तीव्रता है

$$\begin{aligned}\vec{E}_+ &= \frac{1}{4\pi\epsilon_0} \frac{q}{BP^2} \text{ along PD} \\ &= \frac{1}{4\pi\epsilon_0} \frac{q}{(r^2 + l^2)} \text{ along PD} \dots(i)\end{aligned}$$

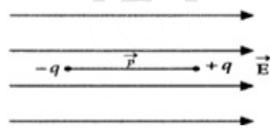
$-q$ आवेश के कारण P पर विद्युत क्षेत्र की तीव्रता है,

$$\begin{aligned}\vec{E}_- &= \frac{1}{4\pi\epsilon_0} \frac{q}{AP^2} \text{ along PC} \\ &= \frac{1}{4\pi\epsilon_0} \frac{q}{(r^2 + l^2)} \text{ along PC} \dots(ii)\end{aligned}$$

From (i) and (ii), $|\vec{E}_+| = |\vec{E}_-| = \frac{1}{4\pi\epsilon_0} \frac{q}{(r^2 + l^2)}$... (iii)

विद्युत द्विध्रुव के कारण शुद्ध विद्युत क्षेत्र की तीव्रता

$$\begin{aligned}
 \therefore E &= \sqrt{E_+^2 + E_-^2 + 2E_+ E_- \cos 2\theta} \\
 \Rightarrow E &= \sqrt{E_+^2 + E_-^2 + 2E_+^2 \cos 2\theta} \quad (\because E_- = E_+) \\
 \Rightarrow E &= \sqrt{2E_+^2 + 2E_+^2 \cos 2\theta} \\
 \Rightarrow E &= \sqrt{2E_+^2(1 + \cos 2\theta)} \\
 \Rightarrow E &= \sqrt{2E_+^2 2 \cos^2 \theta} \quad (\because 1 + \cos 2\theta = 2 \cos^2 \theta) \\
 \therefore E &= 2E_+ \cos \theta = 2 \times \frac{1}{4\pi\epsilon_0 (r^2 + l^2)} \cos \theta \\
 &\quad [\text{Using equation (iii)}]
 \end{aligned}$$

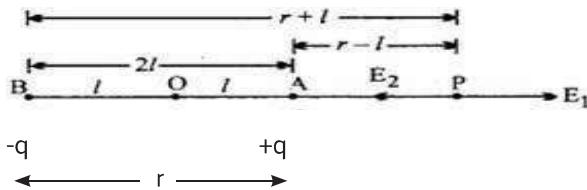

Now from ΔOAP , $\cos \theta = \frac{l}{\sqrt{r^2 + l^2}}$

$$\begin{aligned}
 E &= 2 \times \frac{1}{4\pi\epsilon_0 (r^2 + l^2)} \times \frac{l}{(r^2 + l^2)^{1/2}} \\
 \Rightarrow E &= \frac{q \times 2l}{4\pi\epsilon_0 (r^2 + l^2)^{3/2}}
 \end{aligned}$$

Since $q \times 2l = p$... (p is dipole moment)

$$E = \frac{-\vec{p}}{4\pi\epsilon_0 r^3} \quad (\text{for very small dipole, } r^2 \gg l^2)$$

(iii) (a) स्थिर संतुलन के लिए, \vec{P} और \vec{E} के बीच का कोण 0 डिग्री है,



(b) अस्थिर संतुलन के लिए, \vec{P} और \vec{E} के बीच का कोण 180° डिग्री है।

Q.20. Derive an expression of electric field intensity on a point in axial position (end on position) of an electric dipole.

Ans: Consider an electric dipole made up of charges $+q$ and $-q$ separated by a distance $2l$ apart and placed in vacuum. We have to find out the electric field at point P situated at a distance r from the center of the dipole system. To find out the electric field intensity, imagine a unit positive test charge situated at P.

Electric field intensity due to charge $(+q)$ situated at A will be

$$\begin{aligned}
 \vec{E}_1 &= \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{AP^2} \cdot (\text{along } \vec{AP}) \\
 &= \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{(r+l)^2} \cdot (\text{along } \vec{AP}) \\
 \vec{E}_1 &= \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{(r+l)^2} \cdot (\text{in magnitude form})
 \end{aligned}$$

Electric field intensity due to charge $(-q)$ situated at B will be 1

$$\begin{aligned}
 \vec{E}_2 &= \frac{1}{4\pi\epsilon_0} \cdot \frac{-q}{BP^2} \cdot (\text{along } \vec{PB}) \\
 &= \frac{1}{4\pi\epsilon_0} \cdot \frac{-q}{(r+l)^2} \cdot (\text{along } \vec{PB})
 \end{aligned}$$

$$\vec{E}_2 = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{(r+l)^2} \cdot (\text{in magnitude form})$$

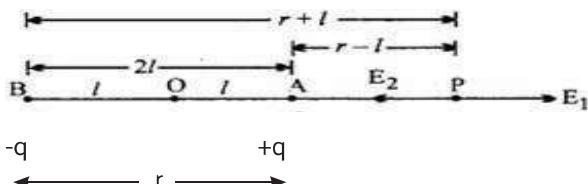
As $AP < PB$, hence the repulsive effect due to charge $+q$ will be more effect than the attractive effect of charge $-q$. Therefore, $E_1 > E_2$ but their directions are opposite. Hence, the net electric field will be

$$\begin{aligned}
 \vec{E} = \vec{E}_1 - \vec{E}_2 &= \frac{1}{4\pi\epsilon_0} \frac{q}{(r+l)^2} - \frac{1}{4\pi\epsilon_0} \frac{q}{(r+l)^2} \\
 &= \frac{q}{4\pi\epsilon_0} \left[\frac{1}{(r+l)^2} - \frac{1}{(r+l)^2} \right] \\
 &= \frac{q}{4\pi\epsilon_0} \left[\frac{(r+l)^2 - (r+l)^2}{(r+l)^2 (r+l)^2} \right] \\
 &= \frac{q}{4\pi\epsilon_0} \left[\frac{(r^2 + l^2 + 2rl) - (r^2 + l^2 - 2rl)}{[(r+l)(r+l)]^2} \right] \\
 &= \frac{q}{4\pi\epsilon_0} \left[\frac{4rl}{(r^2 - l^2)^2} \right] \\
 &= \frac{q}{4\pi\epsilon_0} \cdot \frac{2.2rl}{(r^2 - l^2)^2} \\
 \vec{E} &= \frac{2pr}{4\pi\epsilon_0 (r^2 - l^2)^2} \text{ N/C, } (\because p = 2ql) \dots (1)
 \end{aligned}$$

This is the expression for the electric field which is directed from A to P. For small and strong dipoles,

$$r \gg 2l \Rightarrow r \gg l \Rightarrow r^2 \gg l^2$$

$$\therefore r^2 - l^2 \approx r^2$$


Hence, eqn. (1) becomes

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{2pr}{(r^2)^2} = \frac{1}{4\pi\epsilon_0} \frac{2p}{r^3} \text{ N/C}$$

This is the required expression.

प्रश्न 20. किसी विद्युत द्विधुर्व की अक्षीय स्थिति में किसी बिंदु पर विद्युत क्षेत्र की तीव्रता का व्यंजक व्युत्पन्न कीजिए।

उत्तर: एक विद्युत द्विधुर्व पर विचार करें जो $+q$ और $-q$ आवेशों से बना है जो $2l$ दूरी से अलग हैं और निर्वात में रखे गए हैं। हमें द्विधुर्व निकाय के केंद्र से r दूरी पर स्थित बिंदु P पर विद्युत क्षेत्र का पता लगाना है। विद्युत क्षेत्र की तीव्रता का पता लगाने के लिए, P पर स्थित एक इकाई धनात्मक परीक्षण आवेश की कल्पना करें।

A पर स्थित आवेश (+q) के कारण विद्युत क्षेत्र की तीव्रता होगी

$$\vec{E}_1 = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{AP^2}, \text{ (along } \vec{AP})$$

$$= \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{(r-l)^2}, \text{ (along } \vec{AP})$$

$$E_1 = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{(r-l)^2}, \text{ (in magnitude form)}$$

B पर स्थित आवेश (-q) के कारण विद्युत क्षेत्र की तीव्रता होगी

$$\vec{E}_2 = \frac{1}{4\pi\epsilon_0} \cdot \frac{-q}{BP^2}, \text{ (along } \vec{PB})$$

$$= \frac{1}{4\pi\epsilon_0} \cdot \frac{-q}{(r+l)^2}, \text{ (along } \vec{PB})$$

$$E_2 = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{(r+l)^2}, \text{ (in magnitude form)}$$

चूंकि $AP < PB$, इसलिए आवेश +q के कारण प्रतिकर्षण प्रभाव आवेश -q के आकर्षक प्रभाव से अधिक प्रभावी होगा। इसलिए, $E_1 > E_2$ लेकिन उनकी दिशाएं विपरीत हैं। इसलिए, शुद्ध विद्युत क्षेत्र होगा

$$\begin{aligned} E &= E_1 - E_2 = \frac{1}{4\pi\epsilon_0} \frac{q}{(r-l)^2} - \frac{1}{4\pi\epsilon_0} \frac{q}{(r+l)^2} \\ &= \frac{q}{4\pi\epsilon_0} \left[\frac{1}{(r-l)^2} - \frac{1}{(r+l)^2} \right] \\ &= \frac{q}{4\pi\epsilon_0} \left[\frac{(r+l)^2 - (r-l)^2}{(r-l)^2(r+l)^2} \right] \\ &= \frac{q}{4\pi\epsilon_0} \left[\frac{(r^2 + l^2 + 2rl) - (r^2 + l^2 - 2rl)}{[(r-l)(r+l)]^2} \right] \\ &= \frac{q}{4\pi\epsilon_0} \left[\frac{4rl}{(r^2 - l^2)^2} \right] \\ &= \frac{q}{4\pi\epsilon_0} \cdot \frac{2.2rl}{(r^2 - l^2)^2} \\ E &= \frac{2pr}{4\pi\epsilon_0(r^2 - l^2)^2} \text{ N/C, } (\because p = 2ql) \dots(1) \end{aligned}$$

यह विद्युत क्षेत्र के लिए व्यंजक है जो A से P की ओर निर्देशित होता है। छोटे और मजबूत द्विघुर के लिए,

$$r \gg l \Rightarrow r \gg l \Rightarrow r^2 \gg l^2$$

$$\therefore r^2 - l^2 \approx r^2$$

इसलिए, समीकरण (1) बन जाता है

$$E = \frac{1}{4\pi\epsilon_0} \frac{2pr}{(r^2)^2} = \frac{1}{4\pi\epsilon_0} \frac{2p}{r^3} \text{ N/C}$$

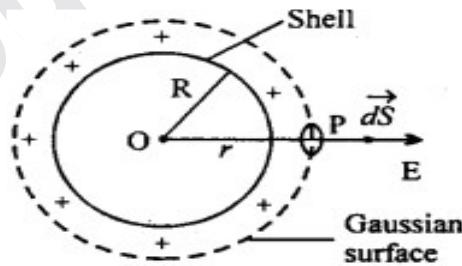
यह आवश्यक अभिव्यक्ति है।

Q.21. Determine the intensity of electric field by Gauss' law, due to a uniformly charged spherical shell at a point

1. Outside the shell

2. On the surface of shell

3. Inside the shell.


Draw a graph showing the variation of electric field with the distance from the center.

Ans: Intensity of electric field due to uniformly charged spherical shell:

Suppose that a sphere of radius R is uniformly charged with +q charge. Intensity at any point due to this charged sphere depends on its position relative to the sphere.

(i) When point P lies outside the spherical shell:

Consider a point P which lies outside the spherical shell of radius R. Now, imagine a sphere of radius r which passes through P. This closed surface behaves as a Gaussian surface. Since, sphere is uniformly charged, so that the electric field at each point on the surface is equal and points radially outward.

Net flux through the Gaussian sphere of radius r will be

$$\begin{aligned} \Phi_E &= \oint_S \vec{E} \cdot d\vec{S} = \oint E dS \cos 0^\circ \\ &= E \oint dS \cos 0^\circ, \quad (\because \theta = 0^\circ) \\ &= E \oint dS \\ \Phi_E &= E \cdot 4\pi r^2, \quad (\because \oint dS = 4\pi r^2) \dots(1) \end{aligned}$$

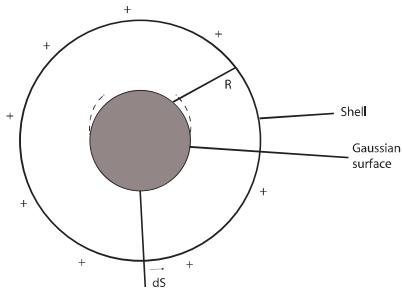
But, the charge enclosed inside the Gaussian surface is q. Therefore, from Gauss' law

$$\Phi_E = q/\epsilon_0 \dots(2)$$

Equating eqns. (1) and (2), we have

$$E \cdot 4\pi r^2 = q/\epsilon_0$$

$$E = (q/4\pi\epsilon_0 r^2) \dots(3)$$


It is clear from the above equation that the electric field outside any uniformly charged spherical shell is exactly to that electric field when we take the same charge at the center of the sphere.

(ii) Point P lies on the surface of spherical shell:

In this case, $r = R$

From eqn. (3),

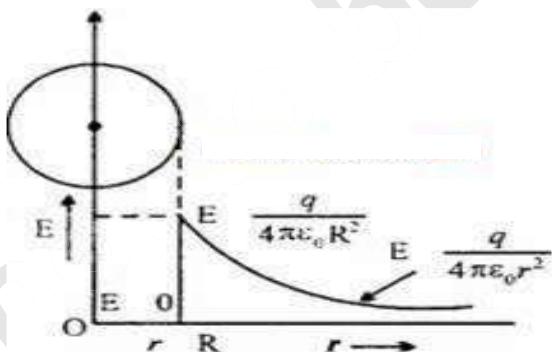
$$E = (q/4\pi\epsilon_0 R^2)$$

(iii) When point P lies inside the spherical shell:

As we know, the charge given to a spherical shell spreads equally all over the surface, there is no charge present inside the sphere. Hence, by Gauss' law,

$$\Phi_E = \frac{1}{\epsilon_0} (0) = 0 \quad \dots(4)$$

$$\text{But, } \Phi_E = \oint_S \vec{E} \cdot d\vec{S} = \oint_S E dS \cos 0$$


$$= E \oint dS = E \cdot 4\pi r^2 \quad \dots(5)$$

From equations (4) and (5),

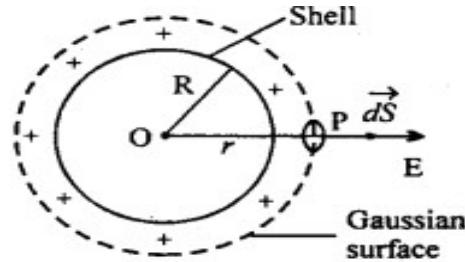
$$E \cdot 4\pi r^2 = 0$$

$$\Rightarrow E = 0$$

Therefore, the electric field inside a spherical shell is always zero. The adjacent figure shows the variation of electric field with distance

प्रश्न 21. गाँस के नियम द्वारा किसी बिंदु पर समान रूप से आवेशित गोलीय खोल के कारण विद्युत क्षेत्र की तीव्रता ज्ञात कीजिए।

- (i) खोल के बाहर
- (ii) खोल की सतह पर
- (iii) खोल के अंदर।


केंद्र से दूरी के साथ विद्युत क्षेत्र के परिवर्तन को दर्शाने वाला एक ग्राफ खोर्चिए।

उत्तर: एक समान आवेशित गोलाकार खोल के कारण विद्युत क्षेत्र की तीव्रता:

मान लीजिए कि त्रिज्या R का एक गोला समान रूप से $+q$ आवेश से आवेशित है। इस आवेशित गोले के कारण किसी बिंदु पर तीव्रता गोले के सापेक्ष उसकी स्थिति पर निर्भर करती है।

(i) जब बिंदु P गोलाकार खोल के बाहर स्थित होता है:

एक बिंदु P पर विचार करें जो त्रिज्या R के गोलाकार खोल के बाहर स्थित है। अब, त्रिज्या R के एक गोले की कल्पना करें जो P से होकर गुजरता है। यह बंद सतह गाँसियन सतह के रूप में व्यवहार करती है। चूंकि, गोला एक समान रूप से आवेशित होता है, इसलिए सतह के प्रत्येक बिंदु पर विद्युत क्षेत्र बराबर होता है और त्रिज्यीय रूप से बाहर की ओर बिंदु होता है।

त्रिज्या के गोले से नेट फ्लाक्स होगा

$$\begin{aligned} \Phi_E &= \oint_S \vec{E} \cdot d\vec{S} = \oint_S E dS \cos 0 \\ &= E \oint dS \cos 0, \quad (\because \theta = 0) \\ &= E \oint dS \\ \Phi_E &= E \cdot 4\pi r^2, \quad (\because \oint dS = 4\pi r^2) \quad \dots(1) \end{aligned}$$

लेकिन गाँसियन सतह के अंदर परिबद्ध आवेश q है। अतः गाँस के नियम से

$$\Phi_E = q/\epsilon_0 \quad \dots(2)$$

समीकरण (1) और (2), कि तुलना करने पर

$$E \cdot 4\pi r^2 = q/\epsilon_0$$

$$E = (q/4\pi\epsilon_0 r^2) \quad \dots(3)$$

उपरोक्त समीकरण से स्पष्ट है कि किसी समान आवेशित गोलीय कोश के बाहर विद्युत क्षेत्र ठीक उसी विद्युत क्षेत्र के समान होता है जब हम गोले के केंद्र पर समान आवेश लेते हैं।

(ii) बिंदु P गोलाकार खोल की सतह पर स्थित है:

इस स्थिति में, $r = R$

समीकरण (3) से,

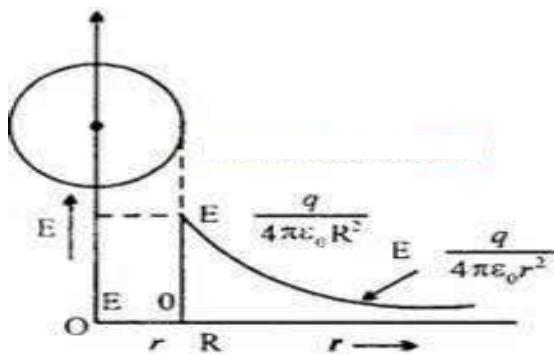
$$E = (q/4\pi\epsilon_0 R^2)$$

(iii) जब बिंदु P गोलाकार खोल के अंदर होता है:

जैसा कि हम जानते हैं कि गोलाकार खोल को दिया गया आवेश पूरी सतह पर समान रूप से फैलता है, गोले के अंदर कोई आवेश मौजूद नहीं होता है। इसलिए, गाँस के नियम द्वारा,

$$\Phi_E = \frac{1}{\epsilon_0} (0) = 0 \quad \dots(4)$$

$$\text{But, } \Phi_E = \oint_S \vec{E} \cdot d\vec{S} = \oint_S E dS \cos 0$$


$$= E \oint dS = E \cdot 4\pi r^2 \quad \dots(5)$$

समीकरण (4) और (5) से,

$$E \cdot 4\pi r^2 = 0$$

$$\Rightarrow E = 0$$

इसलिए, गोलाकार खोल के अंदर विद्युत क्षेत्र हमेशा शून्य होता है। संलग्न चित्र दूरी के साथ विद्युत क्षेत्र के परिवर्तन को दर्शाता है

$$\therefore F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

$$3.7 \times 10^{-9} = \frac{9 \times 10^9 \times q^2}{(5 \times 10^{-10})^2}$$

$$q^2 = \frac{3.7 \times 10^{-9} \times 25 \times 10^{-20}}{9 \times 10^9}$$

$$= 10.28 \times 10^{-38}$$

$$q = 3.2 \times 10^{-19} C$$

$$q = 3.2 \times 10^{-19}$$

$$q = n e$$

$$n = \frac{3.2 \times 10^{-19}}{1.6 \times 10^{-19}} = 2$$

प्रत्येक आयन में दो इलेक्ट्रॉनों की कमी होगी।

Q.22. Two positive ions which have the same charges having a force of repulsion of $3.7 \times 10^{-9} N$. The distance between them is 5 \AA . Find the deficiency of electrons on each ion.

Ans: Solution Given:

$$F = 3.7 \times 10^{-9} N, r = 5 \text{ \AA} = 5 \times 10^{-10} m$$

$$q_1 = q_2 = q$$

$$\therefore F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

$$3.7 \times 10^{-9} = \frac{9 \times 10^9 \times q^2}{(5 \times 10^{-10})^2}$$

$$\therefore F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

$$3.7 \times 10^{-9} = \frac{9 \times 10^9 \times q^2}{(5 \times 10^{-10})^2}$$

$$q^2 = \frac{3.7 \times 10^{-9} \times 25 \times 10^{-20}}{9 \times 10^9}$$

$$= 10.28 \times 10^{-38}$$

$$q = 3.2 \times 10^{-19} C$$

$$q = 3.2 \times 10^{-19}$$

$$q = n e$$

$$n = \frac{3.2 \times 10^{-19}}{1.6 \times 10^{-19}} = 2$$

There will be a deficiency of two electrons in each ion.

प्रश्न 22. समान आवेश वाले दो धनात्मक आयनों का प्रतिकर्षण बल $3.7 \times 10^{-9} N$ है। उनके बीच की दूरी 5 \AA है। प्रत्येक आयन में इलेक्ट्रॉन की कमी ज्ञात कीजिए।

उत्तर: $F = 3.7 \times 10^{-9} N, r = 5 \text{ \AA} = 5 \times 10^{-10} m$

$$q_1 = q_2 = q$$

$$\therefore F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

$$3.7 \times 10^{-9} = \frac{9 \times 10^9 \times q^2}{(5 \times 10^{-10})^2}$$

Q.23. Two point charges $+9e$ and $+e$ are placed $8 m$ apart. Where should the third charge q be placed on the line joining the two charges so that q should be in equilibrium?

Ans: Let the charge q be placed at distance x from $+9e$ charge, then its distance from e will be $8 - x$.

In equilibrium,

$$\frac{1}{4\pi\epsilon_0} \cdot \frac{9e \times q}{x^2} = \frac{1}{4\pi\epsilon_0} \cdot \frac{e \times q}{(8-x)^2}$$

$$\frac{9}{x^2} = \frac{1}{(8-x)^2}$$

$$\frac{3}{x} = \frac{\pm 1}{8-x}$$

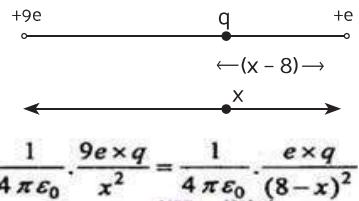
Taking +ve sign

$$\Rightarrow 24 - 3x = x$$

$$24 = 4x \text{ or } x = 6 m$$

Taking -ve sign,

$$\Rightarrow 24 - 3x = -x$$


$$24 - 2x \text{ or } x = 12 m$$

Since, $+9e$ and $+e$ are similar charges, hence q will be in equilibrium when $x = 6 m$ i.e., q should be placed $6 m$ apart from $+9e$ between the charges.

प्रश्न 23. दो बिंदु आवेश $+9e$ और $+e$, 8 मीटर की दूरी पर रखे गए हैं। तीसरे आवेश q को दोनों आवेशों को मिलाने वाली रेखा पर कहाँ रखा जाए कि q साम्यावस्था में हो?

उत्तर: मान लीजिए चार्ज q को $+9e$ चार्ज से x दूरी पर रखा गया है, तो e से इसकी दूरी $8 - x$ होगी।

साम्यावस्था में,

$$\frac{1}{4\pi\epsilon_0} \cdot \frac{9e \times q}{x^2} = \frac{1}{4\pi\epsilon_0} \cdot \frac{e \times q}{(8-x)^2}$$

$$\frac{9}{x^2} = \frac{1}{(8-x)^2}$$

$$\frac{3}{x} = \frac{\pm 1}{8-x}$$

+ ve चिह्न लेना

$$\Rightarrow 24 - 3x = x$$

$$24 = 4x \text{ या } x = 6 \text{ मी}$$

लेना - ve चिह्न,

$$\Rightarrow 24 - 3x = -x$$

$$24 - 2x \text{ या } x = 12 \text{ मीटर}$$

चूंकि, $+9e$ और $+e$ समान आवेश हैं, इसलिए q साम्यावस्था में होगा जब $x = 6$ मीटर।

Q.24. An electrified rod attracts pieces of paper. After a while these pieces fly away. Why?

Ans. When an electrified rod is brought close to the pieces of paper, by induction an opposite charge appears on pieces of paper due to which these pieces of paper are attracted towards the rod. But when these pieces of paper touch the charged rod, charge of rod transfers to the pieces of paper due to which there will be the force of repulsion between rod and pieces of paper, hence the pieces of paper fly away from the rod.

प्रश्न 24 एक विद्युतीकृत छड़ कागज के टुकड़ों को आकर्षित करती है। थोड़ी देर बाद ये टुकड़े उड़ जाते हैं। क्यों?

उत्तर. जब विद्युतीकृत छड़ को कागज के टुकड़ों के पास लाया जाता है, तो प्रेरण द्वारा कागज के टुकड़ों पर एक विपरीत आवेश आ जाता है जिसके कारण कागज के ये टुकड़े छड़ की ओर आकर्षित होते हैं। लेकिन जब कागज के ये टुकड़े आकर्षित छड़ को छूते हैं, तो छड़ का आवेश कागज के टुकड़ों में स्थानांतरित हो जाता है जिसके कारण छड़ और कागज के टुकड़ों के बीच प्रतिकर्षण बल होगा, इसलिए कागज के टुकड़े छड़ से दूर उड़ जाते हैं।