

वस्तुनिष्ठ प्रश्न

1) A virtual image larger than the object is formed in

(a) Convex mirror (b) Concave mirror
(c) Plane mirror (d) None of these

वस्तु से बड़ा आभासी प्रतिबिंब बनता है।

(a) उत्तल दर्पण से। (b) अवतल दर्पण से।
(c) समतल दर्पण (d) इनमें से कोई नहीं।

Ans- (b)

2) A ray of light bends when it passes from one medium to another. The bending of a ray is called.

(a) Interference (b) dispersion
(c) refraction (d) reflection

एक माध्यम से दूसरे माध्यम में जाने पर प्रकाश की किरण मुड़ जाती है। किरण के मुड़ने को कहा जाता है।

(a) व्यातिकरण (b) वर्ण- विछेपण
(c) अपवर्तन (d) परावर्तन

Ans- (c)

3) The refractive index of water and glass are $4/3$ and $3/2$ respectively. The relative refractive index of water to glass will be-

(a) 2 (b) $1/2$
(c) $9/8$ (d) $8/9$

जल और कांच के अपवर्तनांक क्रमशः $4/3$ तथा $3/2$ हैं। जल का कांच के सापेक्ष अपवर्तनांक होगा-

(a) 2 (b) $1/2$
(c) $9/8$ (d) $8/9$

Ans- (d)

4) When a convex lens whose refractive index is 1.5 and focal length f is immersed in water ($n=4/3$), then its focal length-

(a) becomes greater than f ,
(b) becomes smaller than f ,
(c) remains unchanged,
(d) none of the above.

जब एक उत्तल लेंस जिसका अपवर्तनांक 1.5 तथा फोकस दूरी f है, पानी में डुबोया जाता है ($n=4/3$), तो इसकी फोकस दूरी-

(a) f से बड़ा हो जाती है, (b) f से छोटा हो जाती है,
(c) अपरिवर्तित रहती है, (d) इनमें से कोई नहीं।

Ans- (a)

5) The radii of curvature of a bi-convex lens are 10 cm and 15 cm. If the refractive index of its material is 1.5, then its focal length will be-

(a) 30 cm (b) 24 cm
(c) 12 cm (d) 24 cm

द्वि-उत्तल लेंस की वक्रता त्रिज्याएँ 10 सेमी और 15 सेमी हैं। यदि इसके पदार्थ का अपवर्तनांक 1.5 हो, तो इसकी फोकस दूरी होगी-

(a) 30 सेमी (b) 24 सेमी
(c) 12 सेमी (d) 24 सेमी

Ans- (c)

6) The image formed by a simple microscope is-

(a) imaginary and erect
(b) imaginary and inverted
(c) real and erect
(d) real and inverted

एक सरल सूक्ष्मदर्शी से बना हुआ प्रतिबिम्ब होता है-

(a) कल्पनिक व सीधा
(b) काल्पनिक व उल्टा
(c) वास्तविक व सीधा
(d) वास्तविक व उल्टा।

Ans- (a)

7) The focal lengths of the objective and the eyepiece of a telescope are F and f respectively. The magnifying power of the telescope is-

(a) $F+f$ (b) $F-f$
(c) F/f (d) f/F

किसी दूरदर्शी के अभिदृश्यक तथा नेत्रिका की फोकस दूरियाँ क्रमशः F तथा f हैं। दूरदर्शी की आवर्धन क्षमता है-

(a) $F+f$ (b) $F-f$
(c) F/f (d) f/F

Ans- (c)

8) When the length of the tube of the compound microscope is increased, then its magnifying power -

(a) increases, (b) decreases,
(c) becomes zero (d) remains unchanged.

जब संयुक्त सम्मदर्शी की नली की लम्बाई बड़ा दी जाती है, तो उसकी आवर्धन क्षमता-

(a) बढ़ती है (b) घटती है
(c) शून्य हो जाती है (d) अपरिवर्तित रहती है।

Ans- (a)

9) With increase in wavelength, the value of refractive index-

(a) increases, (b) decreases,
(c) remains unchanged, (d) none of these

तरंग दैर्घ्य में वृद्धि के साथ, अपवर्तनांक का मान-

(a) बढ़ता है (b) घटता है
(c) अपरिवर्तित रहता है, (d) इनमें से कोई नहीं।

Ans- (b)

10) In the absence of atmosphere, the color of the sky would be visible from the earth -

(a) Black, (b) Blue,
(c) Orange, (d) Red

वायुमंडल की अनुपस्थिति में पृथकी से आसमान का रंग दिखाई देगा -

(a) काला, (b) नीला,
(c) नारंगी, (d) लाला।

Ans- (a)

Subjective question (विषयनिष्ठ प्रश्न)

1) The wavelength of light from sodium source in vacuum is 5893 Å. What are its (a) wavelength, (b) speed and (c) frequency when this light travels in water which has a refractive index of 1.33.

निर्वात में सोडियम स्रोत से प्रकाश की तरंग दैर्घ्य 5893 Å है। इसकी (a) तरंग दैर्घ्य, (b) गति और (c) आवृत्ति क्या हैं जब यह प्रकाश पानी में यात्रा करता है जिसका अपवर्तनांक 1.33 है।

Ans -

The refractive index of vacuum, $n_1 = 1$

The wavelength in vacuum, $\lambda_1 = 5893 \text{ Å}$

The speed in vacuum, $c = 3 \times 10^8 \text{ m s}^{-1}$

The refractive index of water, $n_2 = 1.33$

The wavelength of light in water, $\lambda_2 = ?$

The speed of light in water, $v_2 = ?$

(a) The equation relating the wavelength and refractive index is,

$$\frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$$

Rewriting, $\lambda_2 = \frac{n_1}{n_2} \times \lambda_1$

Substituting the values,

$$\lambda_2 = \frac{1}{1.33} \times 5893 \text{ Å} = 4431 \text{ Å}$$

$$\lambda_2 = 4431 \text{ Å}$$

(b) The equation relating the speed and refractive index is,

$$\frac{v_1}{v_2} = \frac{n_2}{n_1}$$

Rewriting, $v_2 = \frac{n_1}{n_2} \times v_1$

Substituting the values,

$$v_2 = \frac{1}{1.33} \times 3 \times 10^8 = 2.256 \times 10^8$$

$$v_2 = 2.256 \times 10^8 \text{ ms}^{-1}$$

(c) Frequency of light in vacuum is,

$$v_1 = \frac{c}{\lambda_1}$$

Substituting the values,

$$v_1 = \frac{3 \times 10^8}{5893 \times 10^{-10}} = 5.091 \times 10^{14} \text{ Hz}$$

Frequency of light in water is, $v_2 = \frac{v_1}{n_2}$

Substituting the values,

$$v_2 = \frac{2.256 \times 10^8 \text{ ms}^{-1}}{4431 \times 10^{-10}} = 5.091 \times 10^{14} \text{ Hz}$$

The results show that the frequency remains the same in all media.

उत्तर - निर्वात का अपवर्तक सूचकांक, $n_1 = 1$

निर्वात में तरंगदैर्घ्य, $\lambda_1 = 5893 \text{ Å}$

निर्वात में गति, $c = 3 \times 10^8 \text{ m s}^{-1}$

जल का अपवर्तनांक, $n_2 = 1.33$

पानी में प्रकाश की तरंग दैर्घ्य, $\lambda_2 = ?$

जल में प्रकाश की गति, $v_2 = ?$

(a) तरंग दैर्घ्य और अपवर्तक सूचकांक से संबंधित समीकरण है?

$$\frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$$

Rewriting, $\lambda_2 = \frac{n_1}{n_2} \times \lambda_1$

Substituting the values,

$$\lambda_2 = \frac{1}{1.33} \times 5893 \text{ Å} = 4431 \text{ Å}$$

$$\lambda_2 = 4431 \text{ Å}$$

(b) गति और अपवर्तक सूचकांक से संबंधित समीकरण है?

$$\frac{v_1}{v_2} = \frac{n_2}{n_1}$$

Rewriting, $v_2 = \frac{n_1}{n_2} \times v_1$

Substituting the values,

$$v_2 = \frac{1}{1.33} \times 3 \times 10^8 = 2.256 \times 10^8$$

$$v_2 = 2.256 \times 10^8 \text{ ms}^{-1}$$

(c) निर्वात में प्रकाश की आवृत्ति है,

$$v_1 = \frac{c}{\lambda_1}$$

Substituting the values,

$$v_1 = \frac{3 \times 10^8}{5893 \times 10^{-10}} = 5.091 \times 10^{14} \text{ Hz}$$

Frequency of light in water is, $v_2 = \frac{v_1}{n_2}$

Substituting the values,

$$v_2 = \frac{2.256 \times 10^8 \text{ ms}^{-1}}{4431 \times 10^{-10}} = 5.091 \times 10^{14} \text{ Hz}$$

परिणाम बताते हैं कि आवृत्ति सभी मीडिया में समान रहती है।

2) A glass lens of refractive index 1.5 is placed in a trough of liquid. What must be the refractive index of the liquid in order to mark the lens disappear?

अपवर्तनांक 1.5 को द्रव की एक गर्त में रखा गया है। लेंस के गायब होने को चिह्नित करने के लिए तरल का अपवर्तनांक क्या होना चाहिए ?

Ans- In order to make the lens disappear the refractive index of liquid must be equal to 1.5 i.e. equal to that of glass lens.

उत्तर- लेंस को लुप्त करने के लिए तरल का अपवर्तनांक 1.5 के बराबर होना चाहिए अर्थात कांच के लेंस के बराबर होना चाहिए।

3) A converging lens of refractive index 1.5 is kept in a liquid medium having the same refractive index. What would be the focal length of the lens in this medium?

अपवर्तनांक 1.5 का एक अभिसारी लेंस समान अपवर्तनांक वाले द्रव माध्यम में रखा जाता है। इस माध्यम में लेंस की फोकस दूरी क्या होगी?

Ans- The lens in the liquid will act like a plane sheet of glass

\therefore Its focal length will be infinite (∞)

उत्तर- तरल में लेंस कांच की एक समतल शीट की तरह कार्य करेगा इसकी फोकस दूरी अनंत होगी (∞)

4) Write the laws of reflection of light?

प्रकाश के परावर्तन के नियम लिखें ?

Ans- There are two laws of reflection of light.

1. The incident ray, the reflected ray and the normal to the reflecting plane at the point of incidence all lie in the same plane.
2. The angle of incidence and the angle of reflection are equal to each other.

उत्तर- प्रकाश के परावर्तन के दो नियम हैं।

1. आपतित किरण, परावर्तित किरण तथा परावर्तक तल के आपतन बिन्दु पर खींचा गया अभिलंब तीनों एक ही समतल में होते हैं।
2. आपतन कोण और परावर्तन कोण परस्पर बराबर होते हैं।

5) What is refraction?

अपवर्तन क्या है?

Ans- Refraction is the phenomenon of change in the direction of a light traveling from one medium to another or it may be defined as the bending of a light when it passes from one medium to another. It is caused by the difference in optical density between the two media.

उत्तर- अपवर्तन एक माध्यम से दूसरे माध्यम में यात्रा करने वाली प्रकाश की दिशा में परिवर्तन की घटना है या इसे प्रकाश के झुकने के रूप में परिभाषित किया जा सकता है जब यह एक माध्यम से दूसरे माध्यम में जाता है। यह दो माध्यमों के बीच ऑप्टिकल घनत्व में अंतर के कारण होता है।

6) What is the difference between reflection and refraction of light?

प्रकाश के परावर्तन और अपवर्तन में क्या अंतर है?

Ans- Reflection of light occurs when light bounces off a medium. If the surface of the medium is smooth, then the angle of incidence is equal to the angle of reflection. Refraction of light is the change in the direction of light as it passes from one medium to another.

उत्तर- प्रकाश का परावर्तन तब होता है जब प्रकाश किसी माध्यम से टकराता है। यदि माध्यम की सतह चिकनी है, तो आपतन कोण परावर्तन कोण के बराबर होता है। प्रकाश का अपवर्तन प्रकाश

की दिशा में परिवर्तन है क्योंकि यह एक माध्यम से दूसरे माध्यम में जाता है।

7) Why do stars twinkle?

तारे क्यों टिमटिमाते हैं?

Ans- As light from a star enters Earth's atmosphere, each stream of starlight is refracted slightly due to the direction being changed by the different temperature and density layers in Earth's atmosphere. That's why the stars twinkle.

उत्तर- जैसे ही एक तारे से प्रकाश पृथ्वी के वायुमंडल में प्रवेश करता है, पृथ्वी के वायुमंडल में अलग-अलग तापमान और घनत्व परतों द्वारा दिशा बदलने के कारण तारों की प्रत्येक धारा अपवर्तित हो जाती है। इसलिए तारे टिमटिमाते हैं।

8) अपवर्तक सूचकांक क्या है?

What is the refractive index?

Ans- The refractive index is a measure of the bending of a light ray when it passes from one medium to another. It can also be defined as the ratio of the velocity of a light beam in free space to the speed of light in a substance, $n = c/v$.

उत्तर- अपवर्तक सूचकांक एक प्रकाश किरण के झुकने का एक उपाय है जब यह एक माध्यम से दूसरे माध्यम में जाता है। इसे किसी पदार्थ में प्रकाश की गति के मुक्त स्थान में प्रकाश किरण के वेग के अनुपात के रूप में भी परिभाषित किया जा सकता है, $n = c/v$

9) Define a simple microscope with its magnifying power and uses.

सरल सूक्ष्मदर्शी को उसकी आवर्धन क्षमता एवं उपयोग के साथ परिभाषित कीजिए।

Ans- A simple microscope is one that uses a single lens for magnification, such as a magnifying lens while a compound microscope uses multiple lenses to increase the magnification of an object. It uses a lens to magnify an object only through angular magnification, giving the viewer an upright enlarged virtual image. A simple microscope has a convex lens of short focal length, which is used to view magnified images of small objects.

The magnifying power of a simple microscope is given by:

$m = 1 + D/F$ where D = least distance of distinct vision, F = focal length of the convex lens

उत्तर- एक साधारण सूक्ष्मदर्शी वह है जो आवर्धन के लिए एकल लेंस का उपयोग करता है, जैसे आवर्धक लेंस जबकि एक मिश्रित सूक्ष्मदर्शी किसी वस्तु के आवर्धन को बढ़ाने के लिए कई लेंसों का उपयोग करता है। यह केवल कोणीय आवर्धन के माध्यम से किसी वस्तु को बढ़ा करने के लिए एक लेंस का उपयोग करता है, जिससे दृश्यक को एक सीधा बढ़ा हुआ आभासी चित्र मिलता है। सरल सूक्ष्मदर्शी में छोटी फोकस दूरी का एक उत्तल लेंस होता है, जिसका उपयोग छोटी वस्तुओं के आवर्धित प्रतिबिम्बों को देखने के लिए किया जाता है।

एक साधारण सूक्ष्मदर्शी की आवर्धन क्षमता इसके द्वारा दी जाती है:

$m = 1 + D/F$ जहाँ D = सुस्पष्ट दृष्टि की न्यूनतम दूर,

F = उत्तल लेंस की फोकस दूरी

10) A man with a near point of 25 cm reads a book with small print using a magnifying glass, a convex lens of focal length 5 cm. (a) What is the closest and the

farthest distance at which he should keep the lens from the page so that he can read the book when viewing through the magnifying glass? (b) What is the maximum and the minimum angular magnification (magnifying power) possible using the above simple microscope?

25 cm के निकट बिंदु वाला एक आदमी 5 cm फोकल लंबाई के उत्तल लैंस, एक आवर्धक लैंस का उपयोग करके छोटे प्रिंट वाली एक किताब पढ़ता है। (a) वह निकटतम और सबसे दूर की दूरी क्या है जिस पर उसे लैंस को पृष्ठ से रखना चाहिए ताकि आवर्धक लैंस के माध्यम से देखने पर वह पुस्तक को पढ़ सके? (b) उपरोक्त सरल सूक्ष्मदर्शी का उपयोग करके अधिकतम और न्यूनतम कोणीय आवर्धन (आवर्धन शक्ति) क्या संभव है?

Ans - $D = 25 \text{ cm}; f = 5 \text{ cm}$;

For closest object distance, u ; the image distance, v is, -25 cm . (near point focusing)

For farthest object distance, u' ; the corresponding image distance, v' is, $v' = \infty$ (normal focusing)

(a) To find closest image distance, lens equation, $1/v - 1/u = 1/f$

Rewriting for closest object distance, $1/u = 1/v - 1/f$

$$\frac{1}{u} = \frac{1}{v} - \frac{1}{f}$$

Substituting ,

$$\frac{1}{u} = \frac{1}{-25} - \frac{1}{5} = \frac{1}{-25} - \frac{1}{5}$$

$$= \left(\frac{-1 - 5}{25} \right) = -\frac{6}{25}$$

$$u = -\frac{25}{6} = -4.167 \text{ cm}$$

The closest distance at which the person should can keep the book is, $u = -4.167 \text{ cm}$

To find farthest object distance, lens equation is, $1/v' - 1/u' = 1/f'$

Rewriting for farthest object distance, $1/u' = 1/v' - 1/f'$

Substituting, $1/u' = 1/\infty - 1/5; u' = -5 \text{ cm}$

The farthest distance at which the person can keep the book is, $u' = -5 \text{ cm}$

(b) To find magnification in near point focusing, $m = 1 + D/f = 1 + 25/5 = 6$

To find magnification in normal focusing,

$$m = D/f = 25/5 = 5$$

उत्तर - $D = 25 \text{ cm}; f = 5 \text{ cm}$;

निकटतम वस्तु दूरी के लिए, u ; प्रतिबिंब दूरी, v है, -25 सेमी । (निकट बिंदु फोकसिंग)

सबसे दूर की वस्तु दूरी के लिए, u' ; संबंधित प्रतिबिंब दूरी, v' है, $v' = \infty$ (सामान्य फोकसिंग)

(a) निकटतम प्रतिबिंब दूरी, लैंस समीकरण, $1/v - 1/u = 1/f$ के लिए

निकटतम वस्तु दूरी के लिए पुनर्लेखन, $1/u = 1/v - 1/f$

$$\frac{1}{u} = \frac{1}{v} - \frac{1}{f}$$

Substituting ,

$$\frac{1}{u} = \frac{1}{-25} - \frac{1}{5} = \frac{1}{-25} - \frac{1}{5}$$

$$= \left(\frac{-1 - 5}{25} \right) = -\frac{6}{25}$$

$$u = -\frac{25}{6} = -4.167 \text{ cm}$$

वह निकटतम दूरी जिस पर व्यक्ति पुस्तक रख सकता है, $u = -4.167 \text{ cm}$ है

सबसे दूर वस्तु दूरी खोजने के लिए, लैंस समीकरण है, $1/v' - 1/u' = 1/f'$

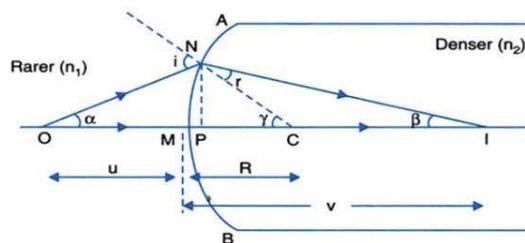
सबसे दूर वस्तु दूरी के लिए पुनर्लेखन, $1/u' = 1/v' - 1/f'$

प्रतिस्थापन, $1/u' = 1/\infty - 1/5; u' = -5 \text{ cm}$

वह अधिकतम दूरी जिस पर व्यक्ति पुस्तक रख सकता है, $u' = -5 \text{ cm}$ है

(b) निकट बिंदु फोकसिंग में आवर्धन खोजने के लिए, एम = $1 + D/f = 1 + 25/5 = 6$

सामान्य फोकसिंग में आवर्धन खोजने के लिए,


$$M = D/f = 25/5 = 5$$

11) Establish the formula $n/v - 1/u = (n-1)/R$ for refraction of light on a spherical surface (convex or concave).

किसी गोलीय पृष्ठ (उत्तल अथवा अवतल) पर प्रकाश के अपवर्तन के लिए सूत्र $n/v - 1/u = (n-1)/R$ स्थापित कीजिए।

Ans - The change in direction or bending of a light wave passing from one transparent medium to another caused by the change in wave's speed is the Refraction. Suppose the below figure is a spherical surface. There is one medium with refractive index n_1 and second medium with refractive index n_2 .

There is an object O and a ray of light from the object O is incident on the spherical mirror. Since it is moving from a rarer medium to a denser medium, the ray bends towards the normal. An image is formed and radius of curvature of a spherical surface is R with the center C of the spherical surface.

"u" is the object distance from a pole of a spherical surface

"v" is the image distance from a pole of the spherical surface

Now as we know that,

n_1 is the refractive index of a medium from which rays are incident, n_2 is the refractive index of another medium.

We get,

$$\tan\alpha = MN/OM$$

$$\tan\gamma = MN/MC$$

$$\tan\beta = MN/MI$$

Now, for Δ NOC,

i is the exterior angle.

$$i = \angle NOM + \angle NCM$$

$$i = MN/OM + MN/MC \dots\dots(1)$$

Similarly,

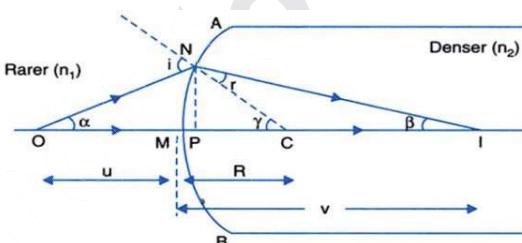
$$r = MN/MC - MN/MI \dots\dots(2)$$

Now by using Snell's law we get

$$n_1 \sin i = n_2 \sin r$$

Substituting i and r from Eq. (1) and (2), we get $n_1/OM + n_2/MI = (n_2 - n_1)/MC$

$$As, OM = -u, MI = +v, MC = +R$$


$$Hence, the equation becomes $n_2/v - n_1/u = (n_2 - n_1)/R$$$

If first medium is air and second medium having refractive index n with respect to air then $n_1 = 1$ and $n_2 = n$

Then equation becomes

$$n/v - 1/u = (n-1)/R$$

उत्तर - तरंग की गति में परिवर्तन के कारण एक पारदर्शी माध्यम से दूसरे में जाने वाली प्रकाश तरंग की दिशा में परिवर्तन या मुड़ना अपवर्तन है। मान लीजिए निम्न आकृति एक गोलाकार सतह है। एक माध्यम है जिसका अपवर्तनांक n_1 है और दूसरा माध्यम जिसका अपवर्तनांक n_2 है। एक वस्तु O है और वस्तु O से प्रकाश की किरण गोलीय दर्पण पर आपतित होती है। चूंकि यह विरल माध्यम से सघन माध्यम में जा रही है, इसलिए किरण अभिलम्ब की ओर मुड़ जाती है और एक प्रतिबिंब बनती है।

गोलाकार सतह की वक्रता की त्रिज्या गोलाकार सतह के केंद्र C के साथ R है।

"u" गोलाकार सतह के ध्रुव से वस्तु की दूरी है

"v" गोलाकार सतह के एक ध्रुव से प्रतिबिंब की दूरी है

अब जैसा कि हम जानते हैं कि,

n_1 उस माध्यम का अपवर्तनांक है जिससे किरणें आपतित होती हैं।

n_2 दूसरे माध्यम का अपवर्तनांक है।

हम पाते हैं,

$$\tan\alpha = MN/OM$$

$$\tan\gamma = MN/MC$$

$$\tan\beta = MN/MI$$

अब, Δ NOC के लिए, i बहिष्कृत है।

$$i = \angle NOM + \angle NCM$$

$$i = MN/OM + MN/MC \dots\dots(1)$$

$$इसी प्रकार, r = MN/MC - MN/MI \dots\dots(2)$$

अब स्लेल के नियम का प्रयोग करने पर हमें प्राप्त होता है

$$n_1 \sin i = n_2 \sin r$$

Eq से i और r को प्रतिस्थापित करना। (1) और (2), हम प्राप्त करते हैं

$$n_1/OM + n_2/MI = (n_2 - n_1)/MC$$

$$जैसे, OM = -u, MI = +v, MC = +R$$

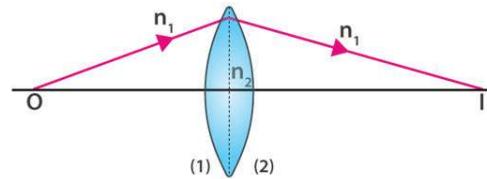
इसलिए, समीकरण $n_2/v - n_1/u = (n_2 - n_1)/R$ बन जाता है।

यदि प्रथम माध्यम वायु हो तथा द्वितीय माध्यम का वायु के सापेक्ष अपवर्तनांक n हो, तो $n_1 = 1$ तथा $n_2 = n$

अतः समीकरण से

$$n/v - 1/u = (n-1)/R$$

12) किसी लेंस के लिए निम्नलिखित सूत्र प्राप्त कीजिए


$$\frac{1}{f} = (n-1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

जहां विभिन्न संकेत सामान्य अर्थों में प्रयुक्त है।

Derive the following formula for a lens

Where different symbols are used in the general sense.

Ans-

The complete derivation of the lens maker formula is described below. Using the formula for refraction at a single spherical surface, we can say that,

For the first surface,

$$\frac{n_2}{v_1} - \frac{n_1}{u} = \frac{n_2 - n_1}{R_1} \dots\dots(1)$$

For the second surface,

$$\frac{n_1}{v} - \frac{n_2}{u} = \frac{n_1 - n_2}{R_2} \dots\dots(2)$$

Now adding equation (1) and (2),

$$\frac{n_1}{v} - \frac{n_1}{u} = (n_2 - n_1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

$$\Rightarrow \frac{1}{v} - \frac{1}{u} = \left(\frac{n_2}{n_1} - 1 \right) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

When $u = \infty$ and $v = f$

$$\frac{1}{f} = \left(\frac{n_2}{n_1} - 1 \right) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

Therefore, we can say that,

$$\frac{1}{f} = (n - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

Where n is the refractive index of the material.

This is the lens maker formula derivation.

उत्तर - लेंस मेकर फॉर्मूला की पूरी व्युत्पत्ति नीचे वर्णित है।

एक गोलाकार सतह पर अपवर्तन के सूत्र का उपयोग करके हम कह सकते हैं कि,

पहली सतह के लिए,

$$\frac{n_2 - n_1}{V_1} = \frac{n_2 - n_1}{R_1} \dots\dots (1)$$

दूसरी सतह के लिए,

$$\frac{n_1 - n_2}{V} = \frac{n_1 - n_2}{R_2} \dots\dots (2)$$

अब समीकरण (1) और (2) को जोड़ने पर,

$$\frac{n_1 - n_1}{V} = (n_2 - n_1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

$$\Rightarrow \frac{1}{V} - \frac{1}{u} = \left(\frac{n_2}{n_1} - 1 \right) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

When $u = \infty$ and $v = f$

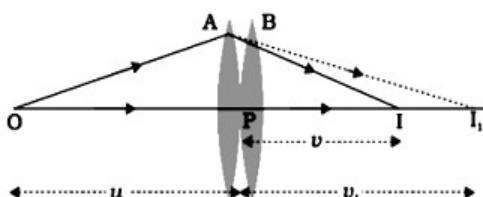
$$\frac{1}{f} = \left(\frac{n_2}{n_1} - 1 \right) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

Therefore, we can say that,

$$\frac{1}{f} = (n - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

जब $u = \infty$ और $v = f$

लेकिन,


इसलिए, हम कह सकते हैं कि, जहां n लेंस का अपवर्तक सूचकांक है।

यह लेंस मेकर फॉर्मूला व्युत्पत्ति है।

13) Derive an expression for the effective (equivalent) focal length of two thin lenses in contact.

संपर्क में दो पतले लेंसों की प्रभावी (समतुल्य) फोकल लंबाई के लिए व्यंजक व्युत्पत्ति कीजिए।

Ans -

Consider two lenses A and B of focal length f_1 and f_2

कक्षा-12 (भौतिकी)

placed in contact with each other. Let the object be placed at a point O beyond the focus of the first lens A (Fig.). The first lens produces an image at I_1 . Since image I_1 is real, it serves as a virtual object for the second lens B, producing the final image at I . It must, however, be borne in mind that formation of image by the first lens is presumed only to facilitate determination of the position of the final image. In fact, the direction of rays emerging from the first lens gets modified in accordance with the angle at which they strike the second lens. Since the lenses are thin, we assume the optical centers of the lenses to be coincident. Let this central point be denoted by P. For the image formed by the first lens A, we get,

$$\frac{1}{v_1} - \frac{1}{u} = \frac{1}{f_1} \dots\dots (1)$$

for the image formed by the

second lens B, we get

$$\frac{1}{v} - \frac{1}{v_1} = \frac{1}{f_2} \dots\dots (2)$$

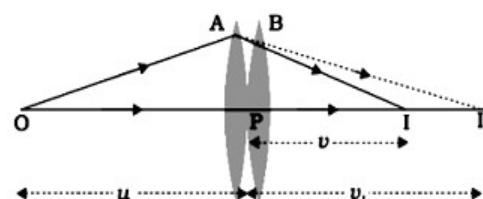
Adding eqn (1) and (2) we get,

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f_1} + \frac{1}{f_2}$$

If the two - lens - system is considered

equivalent to a single lens of focal

length f , then


$$\frac{1}{V} - \frac{1}{u} = \frac{1}{f}$$

so that we get,

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$

The derivation is valid for any number of thin lenses in contact. If several thin lenses of focal length f_1, f_2, f_3, \dots are in contact, the effective focal length of their combination is given by

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3} + \dots$$

उत्तर - फोकस दूरी f_1 और f_2 के दो लेंस A और B पर विचार करें जो एक दूसरे के संपर्क में रखे गए हैं। मान लीजिए कि वस्तु पहले लेंस A (चित्र) के फोकस से परे बिंदु O पर रखी गई है। पहला लेंस I_1 पर एक प्रतिबिंब बनाता है। यूंकि प्रतिबिंब I_1 वास्तविक है, यह दूसरे लेंस B के लिए एक आभासी वस्तु के रूप में कार्य करता है, I पर अंतिम प्रतिबिंब बनाता है। हालांकि, यह ध्यान में रखा जाना चाहिए कि पहले लेंस द्वारा प्रतिबिंब का निर्माण केवल निर्धारित करने की सुविधा के लिए माना जाता है। अंतिम प्रतिबिंब की स्थिति। वास्तव में, पहले लेंस से निकलने वाली किरणों की दिशा दूसरे लेंस से टकराने वाले कोण के अनुसार बदल जाती है। यूंकि लेंस पतले होते हैं, इसलिए हम लेंस के प्रकाशिक केंद्रों को संपाती मान लेते हैं। इस केंद्रीय बिंदु को P द्वारा निरूपित करें। पहले लेंस A द्वारा बनाई गई छवि के लिए हमें मिलता है,

$$\frac{1}{v_i} - \frac{1}{u} = \frac{1}{f_1} \dots\dots\dots(1)$$

दूसरे लेंस B द्वारा बने प्रतिबिंब के लिए, हम प्राप्त करते हैं

$$\frac{1}{v} - \frac{1}{v_i} = \frac{1}{f_2} \dots\dots\dots(2)$$

Eq (1) और (2) को जोड़ने पर हम प्राप्त करते हैं,

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f_1} + \frac{1}{f_2}$$

यदि दो लेंस-प्रणाली को फोकल लंबाई f के एकल लेंस के समतुल्य माना जाता है, तो

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

ताकि हम प्राप्त करें

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$

व्युत्पत्ति संपर्क में किसी भी संख्या में पतले लेंसों के लिए मान्य है। यदि f_1, f_2, f_3, \dots के कई पतले लेंस संपर्क में हैं, तो उनके संयोजन की प्रभावी फोकल लंबाई इस प्रकार दी जाती है

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3} + \dots$$

14) What do you understand by the condition of minimum deviation of a prism? Find the following formula for prism

$$n_{21} = \frac{n_2}{n_1} = \frac{\sin[(A + \delta_m)/2]}{\sin[A/2]}$$

प्रिज्म के न्यूनतम विचलन की स्थिति से आप क्या समझते हैं?
प्रिज्म के लिए निम्न सूत्र खोजें

$$n_{21} = \frac{n_2}{n_1} = \frac{\sin[(A + \delta_m)/2]}{\sin[A/2]}$$

Ans -

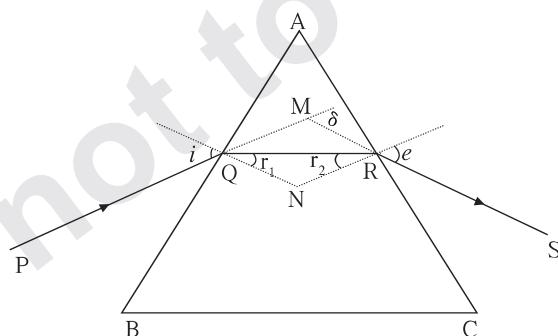


Figure shows the passage of light through a triangular prism ABC.

The angles of incidence and refraction on the first face AB are i and r_1 ,

While the angle of incidence (from glass to air) on the other face AC is r_2 and the angle of refraction or emergent angle e.

Angle between the direction of emergent ray RS and incident ray PQ is called angle of deviation.

In quadrilateral AQNR, two angles (vertices Q and R) are at

right angles.

Therefore, the sum of other angles in the quadrilateral is 180° .

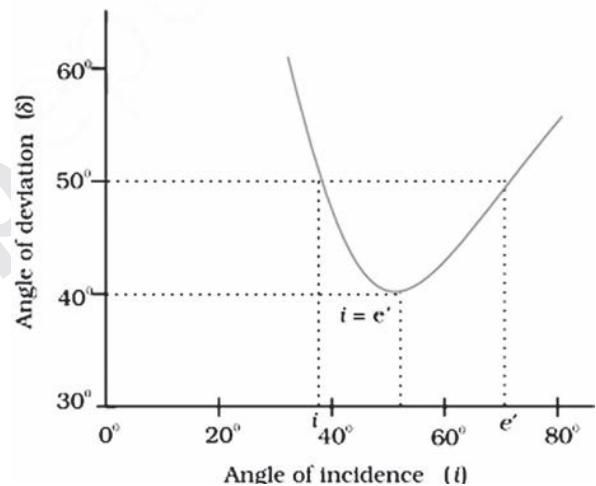
$$A + \angle QNR = 180^\circ$$

from triangle QNR,

$$r_1 + r_2 + \angle QNR = 180^\circ$$

Comparing these two equations, we get

$$r_1 + r_2 = A$$


The total deviation δ is the sum of the deviations on two faces

$$\delta = (i - r_1) + (e - r_2)$$

or,

$$\delta = i + e - A$$

Thus, the angle of deviation depends on the angle of incidence.

A plot between the angle of deviation and the angle of incidence is shown in above figure. We can see that, in general, for any given value of, $i = e$, corresponds to two values i and hence e. It is, in fact, expected by the symmetry of i and e in the above equation, i.e. remains the same if i and e are interchanged. minimum deviation at δ_m

The refracted ray becomes parallel inside the prism to its base. we have

$$\delta = \delta_m, i = e \text{ which means } r_1 = r_2$$

gives,

$$2r = A \text{ or } r = A/2$$

in the same way,

$$\delta_m = 2i - A, \text{ or } i = (A + \delta_m)/2$$

$$\text{the refractive index of the prism is} \\ n_{21} = \frac{n_2}{n_1} = \frac{\sin[(A + \delta_m)/2]}{\sin[A/2]}$$

The angles A and δ_m can be measured experimentally and the refractive index of the prism can be determined from it.

उत्तर -

image formed is near the focal plane of the eyepiece and at a suitable distance for the final image formed at infinity.

We will first find the linear magnification by the objective using $\tan\beta = h/f_o = h'/f_e$

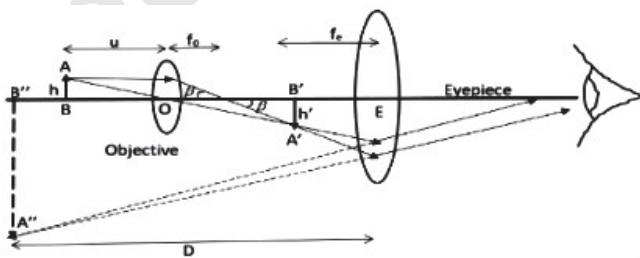
Thus, we have $m_o = h'/h = L/f_o$ (i)

Where, h is the size of the object, h' is the size of the first image, f_o is the focal length of the objective, L is the distance between the focal length of the objective and the eyepiece and is called the tube length of the compound microscope.

Now, we will use a simple microscopic magnification equation to find the angular magnification $m_e = D/f_e$ (ii)

Where, D is the distance of the final image from the eyepiece and f_e is the focal length of the eyepiece.

Now, the total magnification after the image is formed at infinity will be


$$m = m_o \times m_e = L/f_o \times D/f_e$$

Hence the final image formed can be placed by our eyes close to the eyepiece and the final image can be seen after adjusting to the minimum distance of distinct vision i.e. $D = 25$ cm.

Ans - एक यौगिक सूक्ष्मदर्शी एक ऑप्टिकल उपकरण है जो छोटी फोकल लंबाई के दो उत्तल लेंसों से बना होता है, जिसका उपयोग बहुत छोटी वस्तुओं की प्रतिबिम्बों को 1000 गुना तक आवर्धित करने के लिए किया जाता है। यौगिक सूक्ष्मदर्शी का कार्य सिद्धांत यह है कि जब एक बहुत छोटी वस्तु को अभिदृश्यक (ऑब्जेक्टिव) लेंस के फोकस के ठीक परे रखा जाता है, तो एक उल्टी, आभासी और अत्यधिक आवर्धित प्रतिबिम्ब बनती है। बनने वाला प्रतिबिम्ब नेत्रिका (ऐपिस) से स्पष्ट दृष्टि की न्यूनतम दूरी पर बनता है।

यौगिक सूक्ष्मदर्शी में दो उत्तल लेंस होते हैं: एक लेंस का फोकस दूरी कम तथा द्वारक छोटा होता है इसे अभिदृश्यक (ऑब्जेक्टिव) लेंस कहते हैं। दूसरा लेंस जिसे नेत्रिका (ऐपिस) कहते हैं का फोकस दूरी व द्वारक अभिदृश्यक की अपेक्षा अधिक होती है। जैसा कि नाम से पता चलता है, नेत्रिका को आँख के करीब रखा जाता है और अभिदृश्यक को ऑब्जेक्ट की ओर रखा जाता है।

हम एक यौगिक सूक्ष्मदर्शी का योजनाबद्ध आरेख इस प्रकार बना सकते हैं

अभिदृश्यक द्वारा बना प्रतिबिम्ब वास्तविक, उल्टा तथा आवर्धित होता है तथा नेत्रिका के लिए वस्तु का कार्य करता है। इस वस्तु को नेत्रिका द्वारा आवर्धित करके अंतिम प्रतिबिम्ब बनाया जाता है जो आभासी, उल्टा और बड़ा होता है। निर्मित पहली प्रतिबिम्ब नेत्रिका के फोकल तल के पास है और अंत में पर बनने वाली अंतिम प्रतिबिम्ब के लिए उपयुक्त दूरी पर है।

हम पहले $\tan\beta = h/f_o = h'/f_e$ का प्रयोग करके अभिदृश्यक द्वारा रखीय आवर्धन ज्ञात करेंगे

इस प्रकार, हमारे पास $m_o = h'/h = L/f_o$ (i)

जहाँ, h वस्तु का आकार है, h' पहली छवि का आकार है, f_o अभिदृश्यक की फोकस दूरी है, L अभिदृश्यक और नेत्रिका की फोकस दूरी के बीच की दूरी है और इसे ट्यूब की लंबाई कहा जाता है।

अब, हम कोणीय आवर्धन $m_e = D/f_e$ (ii) ज्ञात करने के लिए एक सरल सूक्ष्म आवर्धन सर्वांकित का उपयोग करेंगे।

जहाँ, D नेत्रिका से अंतिम छवि की दूरी है और f_e नेत्रिका की फोकल लंबाई है।

अब, अंत में पर छवि बनने के बाद कुल आवर्धन होगा $m = m_o \times m_e = L/f_o \times D/f_e$

अतः निर्मित अंतिम प्रतिबिम्ब को हमारी आँखों द्वारा नेत्रिका के पास रखा जा सकता है और अंतिम प्रतिबिम्ब को स्पष्ट दृष्टि की न्यूनतम दूरी अर्थात $D = 25$ सेमी में समायोजित करने के बाद देखा जा सकता है।

A microscope has an objective and eyepiece of focal lengths 5 cm and 50 cm respectively with tube length 30 cm. Find the magnification of the microscope in the (i) near point and (ii) normal focusing.

एक माइक्रोस्कोप में ट्यूब की लंबाई 30 cm के साथ क्रमशः 5 cm और 50 cm फोकल लंबाई का एक अभिदृश्यक और नेत्रिका होता है। (i) निकट बिंदु और (ii) सामान्य फोकसिंग में माइक्रोस्कोप का आवर्धन ज्ञात कीजिए।

$$f_o = 5 \text{ cm} = 5 \times 10^{-2} \text{ m}; f_e = 50 \text{ cm} = 50 \times 10^{-2} \text{ m}$$

$$L = 30 \text{ cm} = 30 \times 10^{-2} \text{ m}; D = 25 \text{ cm} = 25 \times 10^{-2} \text{ m}$$

(i) The total magnification m in near point focusing is,

$$m = m_o m_e$$

$$m = m_o m_e = \left(\frac{L}{f_o} \right) \left(1 + \frac{D}{f_e} \right)$$

Substituting ,

$$m = m_o m_e = \left(\frac{30 \times 10^{-2}}{5 \times 10^{-2}} \right) \left(1 + \frac{25 \times 10^{-2}}{50 \times 10^{-2}} \right)$$

$$= (6)(1.5) = 9$$

(ii) The total magnification m in normal focusing is,

$$m = m_o m_e$$

$$\text{focusing is , } m = m_o m_e = \left(\frac{L}{f_o} \right) \left(\frac{D}{f_e} \right)$$

Substituting ,

$$m = m_o m_e = \left(\frac{30 \times 10^{-2}}{5 \times 10^{-2}} \right) \left(\frac{25 \times 10^{-2}}{50 \times 10^{-2}} \right)$$

$$= (6)(0.5) = 3$$

$$\text{उत्तर - } f_o = 5 \text{ cm} = 5 \times 10^{-2} \text{ m}; f_e = 50 \text{ cm} = 50 \times 10^{-2} \text{ m};$$

$$L = 30 \text{ cm} = 30 \times 10^{-2} \text{ m}; D = 25 \text{ cm} = 25 \times 10^{-2} \text{ m}$$

(i) निकट बिंदु फोकसिंग में कुल आवर्धन m है, $m = m_o m_e$

$$m = m_0 m_e = \left(\frac{L}{f_o} \right) \left(1 + \frac{D}{f_e} \right)$$

Substituting ,

$$m = m_0 m_e = \left(\frac{30 \times 10^{-2}}{5 \times 10^{-2}} \right) \left(1 + \frac{25 \times 10^{-2}}{50 \times 10^{-2}} \right) = (6)(1.5) = 9$$

(ii) सामान्य फोकसिंग में कुल आवर्धन m है, $m = m_0 m_e$

$$\text{focusing is , } m = m_0 m_e = \left(\frac{L}{f_o} \right) \left(\frac{D}{f_e} \right)$$

Substituting ,

$$m = m_0 m_e = \left(\frac{30 \times 10^{-2}}{5 \times 10^{-2}} \right) \left(\frac{25 \times 10^{-2}}{50 \times 10^{-2}} \right) = (6)(0.5) = 3$$

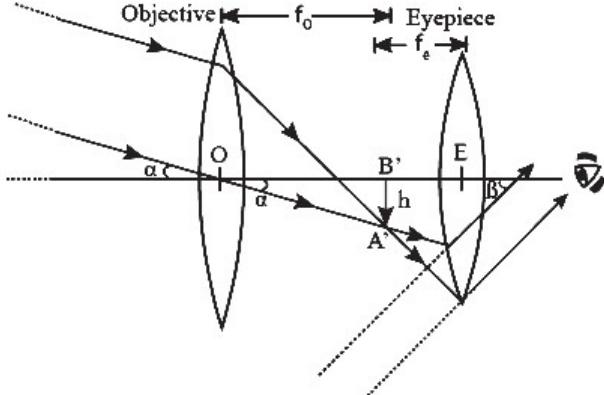
17) Draw a labeled ray diagram of a refracting telescope. Define its magnifying power and write the expression for it.

Write two important limitations of a refracting telescope over a reflecting type telescope.

अपवर्तक दूरदर्शी का नामांकित किरण आरेख बनाइए। इसकी आवर्धन क्षमता को परिभाषित कीजिए तथा इसके लिए व्यंजक लिखिए।

परावर्तक प्रकार के दूरदर्शी पर अपवर्तक दूरदर्शी की दो महत्वपूर्ण सीमाएँ लिखिए।

Ans- Light from a distant object enters the objective and a real image is formed in the tube at its second focal point. The eyepiece magnifies this image to form a final inverted image.


Magnifying power : The magnifying power is the ratio of the angle β subtended at the eye by the final image to the angle α which the object subtends at the lens or the eye.

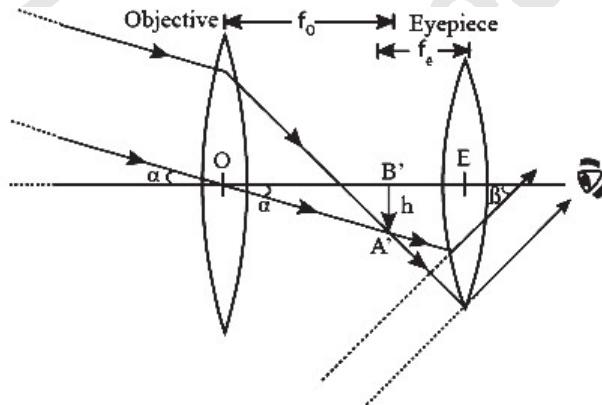
$$m = -\beta/\alpha = -h/f_e f_o / h = -f_o / f_e$$

Limitations of refracting telescope over reflecting type telescope :

- Refracting telescope suffers from chromatic aberration as it uses large sized lenses.
- The requirement of big lenses tend to be very heavy and therefore, difficult to make.

Refracting telescope :

उत्तर - दूर की वस्तु से प्रकाश अभिदृश्यक में प्रवेश करता है और ट्यूब में उसके दूसरे फोकस बिंदु पर वास्तविक प्रतिबिंध बनता है। नेत्रिका इस प्रतिबिंध को आवर्धित करके एक अंतिम उलटी प्रतिबिंध बनाता है।


आवर्धन क्षमता: आवर्धन क्षमता, अंतिम छवि द्वारा आंख पर अंतरित कोण β और वस्तु द्वारा लेंस या आंख पर अंतरित कोण α का अनुपात है।

$$m = -\beta/\alpha = -h/f_e f_o / h = -f_o / f_e$$

परावर्तक प्रकार के टेलीस्कोप पर अपवर्तक टेलीस्कोप की सीमाएँ:

- अपवर्तक दूरदर्शी रंगीन विपथन से ग्रस्त है क्योंकि यह बड़े आकार के लेंसों का उपयोग करता है।
- बड़े लेंसों की आवश्यकता बहुत अधिक होती है और इसलिए इसे बनाना कठिन होता है।

अपवर्तक दूरबीन:

18) A small telescope has an objective lens of focal length 125 cm and an eyepiece of focal length 2 cm. What is the magnification of the telescope? What is the separation between the objective and the eyepiece?

एक छोटे टेलीस्कोप में 125 cm फोकस दूरी का अभिदृश्यक लेंस तथा 2 cm फोकस दूरी की नेत्रिका है। टेलीस्कोप का आवर्धन क्या है? उद्देश्य और नेत्रिका के बीच की दूरी क्या है?

$$\text{Ans - } f_o = 125 \text{ cm}; f_e = 2 \text{ cm}; m = ?; L = ?$$

$$\text{Equation for magnification of telescope, } m = f_o / f_e$$

$$\text{Substituting, } m = 125/2 = 62.5$$

$$\text{Equation for approximate length of telescope, } L = f_o + f_e$$

$$\text{Substituting, } L = 125 + 2 = 127 \text{ cm} = 1.27 \text{ m}$$

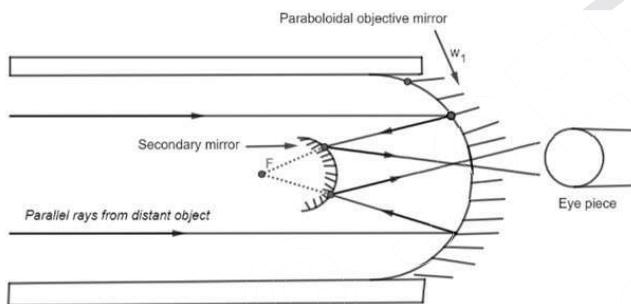
$$f_o = 125 \text{ cm}; f_e = 2 \text{ cm}; m = ?; L = ?$$

$$\text{दूरबीन के आवर्धन के लिए समीकरण, } m = f_o / f_e$$

$$\text{प्रतिस्थापन, } m = 125/2 = 62.5$$

$$\text{टेलीस्कोप की अनुमानित लंबाई के लिए समीकरण, } L = f_o + f_e$$

$$\text{प्रतिस्थापन, } L = 125 + 2 = 127 \text{ cm} = 1.27 \text{ m}$$


19) Draw a labeled ray diagram of the reflecting telescope. Mention its two advantages over the refracting telescope.

परावर्तक दूरदर्शी का नामांकित किरण आरेख खींचिए। अपवर्तक दूरदर्शी की तुलना में इसके दो लाभों का उल्लेख कीजिए।

Ans - A telescope is an optical instrument designed to see distant objects, as it makes them appear nearer. It is constructed using an arrangement of lenses, or of curved mirrors and lenses, using these the rays of light are collected and focused and the resulting image is magnified in nature.

It consists of a large paraboloidal (primary) concave mirror of a large focal length with a hole at its center. There is a small convex (secondary mirror) near the focus of the primary mirror. The eyepiece is placed on the axis of the telescope near the hole of the primary mirror.

The following diagram will clearly portray a reflecting telescope:

Let f_o be the focal length of the objective and f_e the focal length of the eyepiece.

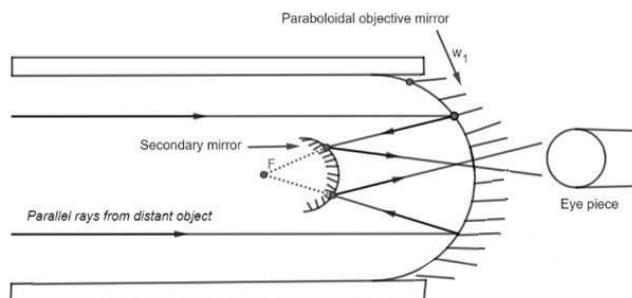
For the final image formed at the least distance of distinct vision

$$m = \frac{f_o}{f_e} \left(1 + \frac{f_e}{D} \right)$$

For the final image formed at infinity

$$m = \frac{f_o}{f_e} = \frac{R}{f_e}$$

The following are two advantages of a reflecting telescope in comparison to a refracting telescope.


(i) A concave mirror of a large aperture has a high gathering power and absorbs a very less amount of light than the lenses of a large aperture. Thus the final image formed in the reflecting telescope is very bright. So even the faint or distant stars can be viewed easily.

(ii) The use of a paraboloidal mirror reduces the spherical aberration i.e. the phenomenon of formation of a non-point and blurred image of a point object.

उत्तर - टेलीस्कोप एक ऑप्टिकल उपकरण है जिसे दूर की वस्तुओं को देखने के लिए डिज़ाइन किया गया है क्योंकि यह उन्हें करीब दिखाई देता है। यह लेंसों, या धूमावदार दर्पणों और लेंसों की एक व्यवस्था का उपयोग करके बनाया गया है, जिसके उपयोग से प्रकाश की किरणों को एकत्रित और केंद्रित किया जाता है और परिणामी छवि प्रकृति में आवर्धित होती है।

इसमें केंद्र में एक छेद के साथ एक बड़ी फोकल लंबाई का एक बड़ा परवलयिक (प्राथमिक) अवतल दर्पण होता है। प्राथमिक दर्पण के फोकस के पास एक छोटा उत्तल (द्वितीयक दर्पण) होता है। ऐपिस को प्राथमिक दर्पण के द्वारक के निकट दूरदर्शी के अक्ष पर रखा जाता है।

निम्नलिखित चित्र एक परावर्तक दूरदर्शी को स्पष्ट रूप से चित्रित करेगा:

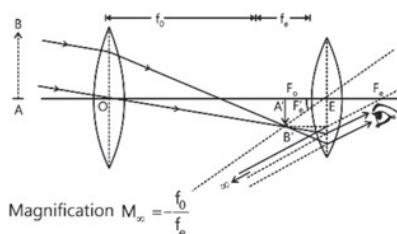
मान लीजिए की f_o अभिदृश्यक की फोकस दूरी है और f_e नेत्रिका की फोकस दूरी है। स्पष्ट दृष्टि की दूरी पर बनने वाली प्रतिबिंब लिए:

$$m = \frac{f_o}{f_e} \left(1 + \frac{f_e}{D} \right)$$

अनंत पर बनी अंतिम प्रतिबिंब के लिए:

$$m = \frac{f_o}{f_e} = \frac{R}{f_e}$$

अपवर्तक दूरदर्शी की तुलना में परावर्तक दूरदर्शी के निम्नलिखित दो लाभ हैं:


(i) बड़े द्वारक के अवतल दर्पण में उच्च संग्रहण शक्ति होती है और बड़े द्वारक के लेंसों की तुलना में बहुत कम मात्रा में प्रकाश अवशोषित करता है। इस प्रकार परावर्तक दूरदर्शी में बनने वाली अंतिम प्रतिबिंब बहुत चमकीली होती है। इसलिए धूंधले या दूर के तारों को भी आसानी से देखा जा सकता है।

(ii) परवलयज दर्पण के प्रयोग से गोलीय विषयन कम हो जाता है, अर्थात बिंदु वस्तु का अविन्दु और धूंधला प्रतिबिम्ब बनने की घटना

20) Draw a ray diagram of an astronomical telescope in a normal adjustment position. Write the expression for its magnifying power.

सामान्य समायोजन स्थिति में किसी खगोलीय दूरदर्शी का किरण आरेख खींचिए। इसकी आवर्धन क्षमता के लिए व्यंजक लिखिए।

Ans- For the eye at rest, the intermediate image should be at the first focus of the eyepiece or $U_e = f_e$

