

वस्तुनिष्ठ प्रश्न

Q1: The electromagnetic induction was discovered by:

(a) Ampere (b) Faraday
(c) Fleming (d) Oersted.

Ans: (b)

Q1: विद्युत चुम्बकीय प्रेरण की खोज किसके द्वारा की गई थी:

(a) एम्पीयर (b) फैराडे
(c) फ्लैमिंग (d) ओर्स्टेड।

उत्तर: (b)

Q2: In the electromagnetic induction, the induced e.m.f. is independent of:

(a) Change in flux (b) Time
(c) Number of turns (d) Resistance of coil.

Ans: (d)

Q2: विद्युत चुम्बकीय प्रेरण में, प्रेरित विद्युत वाहक बल (emf) स्वतंत्र होता है:

(a) पलक्स में परिवर्तन (b) समय
(c) घुमावों की संख्या (d) कॉइल का प्रतिरोध।

उत्तर: (d)

Q3. Lenz's law is in accordance with:

(a) Law of conservation of charge
(b) Law of conservation of energy
(c) Law of conservation of mass
(d) Law of conservation of momentum.

Ans: (b)

Q3: लेंज का नियम निप्रलिखित के अनुसार होता है:

(a) आवेश संरक्षण का नियम
(b) ऊर्जा संरक्षण का नियम
(c) द्रव्यमान संरक्षण का नियम
(d) संवेग संरक्षण का नियम।

उत्तर: (b)

Q4: Unit of self inductance is :

(a) ampere (b) faraday
(c) henry (d) weber.

Ans: (c)

Q4: स्वप्रेरण की इकाई है:

(a) एम्पीयर (b) फैराडे
(c) हेनरी (d) वेबर।

उत्तर: (c)

Q5: The eddy currents are used:

(a) To make a galvanometer dead beat
(b) In speedometer
(c) Electric brake
(d) All the above.

Ans: (d)

Q5: भौंकर धाराओं का उपयोग किया जाता है:

(a) गैल्वेनोमीटर के डेड बीट बनाने के लिए
(b) स्पीडोमीटर में
(c) इलेक्ट्रिक ब्रेक में
(d) उपरोक्त सभी।

उत्तर: (d)

Q6: The direction of induced current is determined by:

(a) Lenz's law
(b) Fleming's right hand rule
(c) Lenz's law and Fleming's right hand rule
(d) Fleming's left hand rule.

Ans: (c)

Q6: प्रेरित धारा की दिशा निर्धारित होती है:

(a) लेंज के नियम से।
(b) फ्लैमिंग के दाएँ हाथ के नियम से।
(c) लेंज के नियम से और फ्लैमिंग के दाएँ हाथ के नियम से।
(d) फ्लैमिंग के बाएँ हाथ के नियम से।

उत्तर: (c)

Q7: If a plane circular coil has N turns then its self-inductance be proportional to the :

(a) N^2 (b) N
(c) \sqrt{N} (d) N^3

Ans: (a)

Q7: यदि एक समतल वृत्ताकार कुंडली में N फेरे हैं तो इसका स्वप्रेरण किसके समानुपाती होगा ?

(a) N^2 (b) N
(c) \sqrt{N} (d) N^3

उत्तर: (a)

Q8: The two identical coils made of copper and aluminum are rotated with uniform speed in a uniform magnetic field then the value of induced current in aluminum coil will be:

(a) Less than that in copper coil
(b) More than that in copper coil
(c) Equal to that in copper coil

(d) No certain relation with copper coil.

Ans: (a)

Q8: कॉपर और एल्युमिनियम से बनी दो समान कुण्डलियों को एक समान चुंबकीय क्षेत्र में एक समान गति से धुमाया जाता है तो एल्युमिनियम की कुंडली में प्रेरित धारा का मान होगा:

- (a) तांबे की कुंडली से कम
- (b) तांबे की कुंडली से अधिक
- (c) तांबे की कुंडली के बराबर
- (d) तांबे की कुंडली के साथ कोई निश्चित संबंध नहीं होगा।

उत्तर: (a)

Q9: Keeping the total length of a coil unchanged, the number of turns in it are doubled. Its self inductance will be:

- (a) Four times
- (b) Doubled
- (c) Halved
- (d) None of the above.

Ans: (a)

Q9: किसी कुंडली की कुल लंबाई में कोई परिवर्तन न करते हुए उसमें फेरों की संख्या को दोगुना कर दिया जाता है। इसका स्वप्रेरण होगा:

- (a) चार गुना
- (b) दोगुना
- (c) आधा
- (d) उपरोक्त में से कोई नहीं।

उत्तर: (a)

Q10: The mutual inductance between the two coil be equal to the emf induced in secondary coil if the current through primary coil is:

- (a) Kept constant at one ampere
- (b) Reduced from 1 ampere to zero
- (c) Varied with the rate of one ampere per second
- (d) None of the above.

Ans: (c)

Q10: दो कॉइल के बीच पारस्परिक प्रेरण द्वितीयक कॉइल में प्रेरित विद्युत वाहक बल (emf) के बराबर होगा यदि प्राथमिक कॉइल के माध्यम से विद्युत धारा:

- (a) एक एम्पीयर पर स्थिर रखा जाए।
- (b) एक एम्पीयर से शून्य तक कम किया जाए।
- (c) एक एम्पीयर प्रति सेकंड की दर से बदला जाए।
- (d) उपरोक्त में से कोई नहीं।

उत्तर: (c)

Q11: The SI unit of magnetic flux is:

- (a) weber
- (b) gauss
- (c) oersted
- (d) tesla.

Ans: (a)

Q11: चुम्बकीय प्रवाह की SI इकाई है:

- (a) वेबर
- (b) गॉस
- (c) ओर्स्टेड
- (d) टेस्ला।

उत्तर: (a)

Q12: Wb/m^2 is the unit.

- (a) magnetic field

(b) magnetic potential

(c) magnetic flux

(d) magnetic moment

Ans: (a)

Q12: Wb/m^2 मात्रक है।

- (a) चुम्बकीय क्षेत्र का
- (b) चुम्बकीय विभव का
- (c) चुम्बकीय पल्कस का
- (d) चुम्बकीय आघूर्ण का

उत्तर: (a)

Q13: A coil of area 5 cm^2 and 100 turns is placed in a uniform magnetic field of 0.2 T. The magnetic field makes an angle of 60° with the normal to the plane of the coil. The magnetic flux through the coil will be

- (a) $5 \times 10^{-5} \text{ Wb}$
- (b) $5 \times 10^{-4} \text{ Wb}$
- (c) $5 \times 10^{-3} \text{ Wb}$
- (d) none of the above.

Ans: (c)

Q13: 100 फेरों तथा 5 cm^2 क्षेत्रफल की किसी कुंडली को 0.2 T समरूप चुम्बकीय क्षेत्र में रखा गया है। कुंडली के तल पर अभिलंब के साथ चुम्बकीय क्षेत्र 60° का कोण बनाता है। कुण्डली में से चुम्बकीय पल्कस होगा

- (a) $5 \times 10^{-5} \text{ Wb}$
- (b) $5 \times 10^{-4} \text{ Wb}$
- (c) $5 \times 10^{-3} \text{ Wb}$
- (d) उपरोक्त में से कोई नहीं।

उत्तर: (c)

Q14: The resistance of a closed circuit is 10 ohms. In this circuit flux changes according to the equation $\Phi = 6t^2 - 5t + 1$ (t in second). so the current induced in the circuit at $t=0.25 \text{ s}$ will be

- (a) 0.3 A
- (b) 0.2 A
- (c) 0.4 A
- (d) 2.0

Ans: (b)

Q14: किसी बन्द परिपथ का प्रतिरोध 10 ओम है। इस परिपथ में t समय (सेकण्ड में) में चुम्बकीय पल्कस (वेबर में) इस समीकरण के अनुसार परिवर्तित होता है $\Phi = 6t^2 - 5t + 1$ तो $t=0.25 \text{ s}$ पर परिपथ में प्रेरित धारा होगी।

- (a) 0.3 A
- (b) 0.2 A
- (c) 0.4 A
- (d) 2.0 A

उत्तर: (b)

Q15: The dimensional formula of magnetic flux is

- (a) $[\text{ML}^2\text{T}^2\text{A}]$
- (b) $[\text{ML}^2\text{T}^2\text{A}^{-1}]$
- (c) $[\text{ML}^{-2}\text{T}^2\text{A}^{-1}]$
- (d) $[\text{ML}^2\text{T}^{-2}\text{A}^{-2}]$

Ans: (b)

Q15: चुम्बकीय पल्कस का विमीय सूत्र है

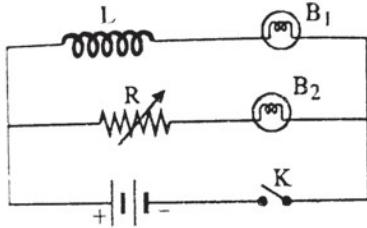
- (a) $[\text{ML}^2\text{T}^2\text{A}]$
- (b) $[\text{ML}^2\text{T}^2\text{A}^{-1}]$
- (c) $[\text{ML}^{-2}\text{T}^2\text{A}^{-1}]$
- (d) $[\text{ML}^2\text{T}^{-2}\text{A}^{-2}]$

उत्तर: (b)

Q16: The current in a coil changes from 0.2A to 0.4A in 0.1s. If the average induced emf in the coil is 1 volt

then the self inductance will be.

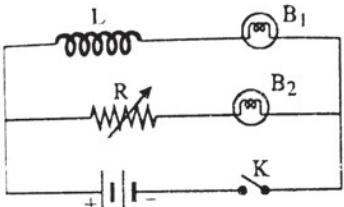
(a) 0.1H	(b) 0.4H
(c) 0.5H	(d) 1H


Ans- (c)

Q16: किसी कुंडली में 0.1s में 0.2A से 0.4 A तक धारा परिवर्तित होती है। कुंडली में औसत प्रेरित विद्युत वाहक बल 1 वोल्ट है तो स्वप्रेरकत्व होगा।

(a) 0.1H	(b) 0.4H
(c) 0.5H	(d) 1H

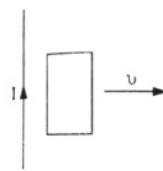
उत्तर- (c)


Q17: Two identical bulbs are connected as shown in the figure.

- (a) After some time both bulbs B_1 and B_2 stop emitting light.
- (b) Both the bulbs B_1 and B_2 stop glowing immediately.
- (c) Bulb B_1 immediately and bulb B_2 stop glowing after some time.
- (d) Bulb B_2 immediately and bulb B_1 stop glowing after some time.

Ans- (d)

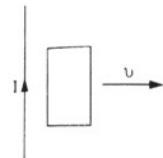
Q17: दो समरूप बल्बों को चित्रानुसार जोड़ा जाता है



- (a) कुछ समय पश्चात B_1 , व B_2 दोनों बल्ब प्रकाशित होना बंद कर देते हैं।
- (b) B_1 , व B_2 दोनों बल्ब तुरन्त प्रकाशित होना बंद कर देते हैं।
- (c) बल्ब B_1 , तुरन्त तथा बल्ब B_2 , कुछ समय पश्चात प्रकाशित होना बंद कर देते हैं।
- (d) बल्ब B_2 तुरन्त तथा बल्ब B_1 , कुछ समय पश्चात प्रकाशित होना बंद कर देते हैं।

उत्तर- (d)

Q18: A current I is flowing upwards in a long straight wire as shown in the figure. When a rectangular


loop of wire placed near it is pulled to the right, the current induced in the loop will

- (a) be zero
- (b) flow in anti-clockwise direction
- (c) flow in clockwise direction
- (d) none of the above.

Ans- (c)

Q18: किसी लम्बे सीधे तार में ऊपर की ओर धारा प्रवाहित हो रही है जैसा कि चित्र में दर्शाया गया है। इसके निकट रखे तार के किसी आयताकार लूप को जब दायीं ओर खींचा जाता है तो लूप में प्रेरित धारा

- (a) शून्य होगी
- (b) वामावर्त दिशा में प्रवाहित होगी
- (c) दक्षिणावर्त दिशा में प्रवाहित होगी
- (d) उपरोक्त में से कोई नहीं।

उत्तर- (c)

Q19: The dimensional formula of induced emf is

(a) $[ML^2T^{-3}A^{-1}]$	(b) $[ML^2T^2A^{-1}]$
(c) $[ML^{-2}T^2A^{-1}]$	(d) $[ML^2T^{-2}A^{-2}]$

Ans- (a)

Q19: प्रेरित विद्युत वाहक बल (emf) का विमीय सूत्र है

(a) $[ML^2T^{-3}A^{-1}]$	(b) $[ML^2T^2A^{-1}]$
(c) $[ML^{-2}T^2A^{-1}]$	(d) $[ML^2T^{-2}A^{-2}]$

उत्तर- (a)

Q20: The dimensional formula of self-induction is

(a) $[ML^2T^{-2}A^{-2}]$	(b) $[ML^2T^2A^{-1}]$
(c) $[ML^{-2}T^2A^{-1}]$	(d) $[ML^2T^{-2}A^{-2}]$

Ans- (a)

Q20: स्वप्रेरण का विमीय सूत्र है

(a) $[ML^2T^{-2}A^{-2}]$	(b) $[ML^2T^2A^{-1}]$
(c) $[ML^{-2}T^2A^{-1}]$	(d) $[ML^2T^{-2}A^{-2}]$

उत्तर- (a)

Subjective Question (विषयनिष्ठ प्रश्न)

Q1. What is electromagnetic induction ?

Ans: Whenever the magnetic flux linked with an electric circuit changes, an emf is induced in the circuit. This phenomenon is called electromagnetic induction.

Q1. विद्युत चुम्बकीय प्रेरण क्या है ?

उत्तर: जब भी किसी विद्युत परिपथ से जुड़े चुम्बकीय फ्लक्स में परिवर्तन होता है, तो परिपथ में एक विद्युत वाहक बल प्रेरित होता है। इस घटना को विद्युत चुम्बकीय प्रेरण कहा जाता है।

Q2. What is magnetic flux ? Is it scalar or vector? Write its SI unit.

Ans: The total number of magnetic field lines crossing through any surface normally, when it is placed in a magnetic field is known as magnetic flux of that surface.

$$d\phi = \mathbf{B} \cdot d\mathbf{s} = Bds \cos \theta$$

It is a scalar quantity. Its SI unit is tesla-meter² (or weber)

Q2. चुम्बकीय फ्लक्स क्या है? क्या यह अदिश या सदिश है? इसका SI मात्रक लिखिए।

उत्तर: किसी भी सतह को चुम्बकीय क्षेत्र में रखे जाने पर उस सतह से लंबवत रूप से गुजरने वाले चुम्बकीय क्षेत्र रेखाओं की कुल संख्या को उस सतह के चुम्बकीय फ्लक्स के रूप में जाना जाता है।

$$d\phi = \mathbf{B} \cdot d\mathbf{s} = Bds \cos \theta$$

यह एक अदिश राशि है। इसकी SI इकाई tesla-metre² (or weber) है।

Q3. Name the physical quantity which is measured by weber.

Ans: Magnetic flux

Q3. वेबर द्वारा मापी जाने वाली भौतिक राशि का नाम लिखिए।

उत्तर: चुम्बकीय फ्लक्स।

Q4. On what factors does the flux passing through a coil depend?

Ans: Since $\Phi = BA \cos \theta$, hence the magnetic flux through the coil depends on:

- (i) magnetic induction
- (ii) the area of the coil A and
- (iii) the angle between B and A.

Q4. किसी कुण्डली में से गुजरने वाला फ्लक्स किन कारकों पर निर्भर करता है ?

उत्तर: चुंकि $\Phi = BA \cos \theta$ अतः कुण्डली में से चुम्बकीय फ्लक्स निम्न कारकों पर निर्भर करता है:

- (i) चुम्बकीय प्रेरण
- (ii) कुण्डली का क्षेत्रफल A तथा
- (iii) B तथा A के मध्य का कोण।

Q5. State Faraday's laws of electromagnetic induction.

Ans: (i) Whenever the magnetic flux linked with a circuit changes, an induced emf is produced in it. The induced emf lasts, so long as the change in magnetic flux continues.

(ii) The magnitude of induced emf is directly proportional to the rate of change in magnetic flux, i.e.

$$e \propto \frac{d\phi}{dt} \Rightarrow e = -\frac{d\phi}{dt}$$

where, constant of proportionality is one and negative sign indicates that the induced emf in the circuit due to the changing flux always opposes the change in magnetic flux.

Q5. फैराडे के विद्युत चुम्बकीय प्रेरण के नियमों का उल्लेख कीजिए।

उत्तर: (i) जब भी किसी सर्किट से जुड़े चुम्बकीय फ्लक्स में परिवर्तन होता है, तो उसमें एक प्रेरित विद्युत वाहक बल (emf) उत्पन्न होता है। प्रेरित विद्युत वाहक बल तब तक रहता है, जब तक चुम्बकीय फ्लक्स में परिवर्तन जारी रहता है।

(ii) प्रेरित विद्युत वाहक बल (emf) का परिणाम चुम्बकीय फ्लक्स में परिवर्तन की दर के समानुपाती होता है,

$$e \propto \frac{d\phi}{dt} \Rightarrow e = -\frac{d\phi}{dt}$$

अर्थात् जहां, समानुपाती का स्थिरांक एक है और क्रणात्मक चिन्ह इंगित करता है कि बदलते चुम्बकीय फ्लक्स के कारण सर्किट में प्रेरित विद्युत वाहक बल (emf) हमेशा चुम्बकीय फ्लक्स में परिवर्तन का विरोध करता है।

Q6. What is the unit of induced electromotive force?

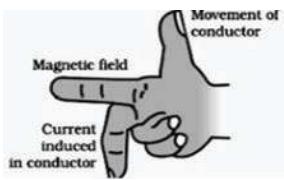
Ans: Volt.

Q6. प्रेरित विद्युत वाहक बल का मात्रक क्या है ?

उत्तर: वोल्ट।

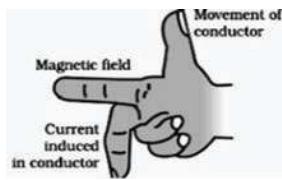
Q7. State Lenz's law. Lenz's law is based on the conservation of which physical quantity?

Ans: The direction of induced emf or induced current is always in such a way that it opposes the cause due to which it is produced. Lenz's law is in accordance with the conservation of energy.


Q7. लैंज का नियम लिखिए। लैंज का नियम किस भौतिक राशि के संरक्षण पर आधारित है ?

उत्तर: प्रेरित विद्युत वाहक बल (emf) या प्रेरित धारा की दिशा हमेशा इस तरह से होती है कि यह उस कारण का विरोध करती है जिसके कारण यह उत्पन्न होता है। लैंज का नियम ऊर्जा संरक्षण सिद्धांत के अनुसार है।

Q8. Define Fleming's right hand rule.


Ans: Fleming's Right Hand Rule: If we stretch the thumb, the forefinger and the central finger of right hand in such a way that all three are perpendicular to each other, then if thumb represent the direction of motion, the forefinger represent the direction of magnetic field, then central finger will represent the

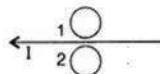
direction of induced current.



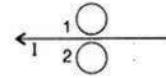
Q9. फ्लॉमिंग के दायें हाथ के नियम को परिभाषित कीजिए।

उत्तर: फ्लॉमिंग का दाहिना हाथ नियम: यदि हम दाहिने हाथ के अंगूठे, तर्जनी और मध्यमा उंगली को इस प्रकार फैलाते हैं कि तीनों एक दूसरे के लंबवत हों, तो यदि अंगूठा गति की दिशा का प्रतिनिधित्व करता है, और तर्जनी चुंबकीय क्षेत्र की दिशा का प्रतिनिधित्व करती हो तो मध्यमा उंगली प्रेरित धारा की दिशा का प्रतिनिधित्व करेगी।

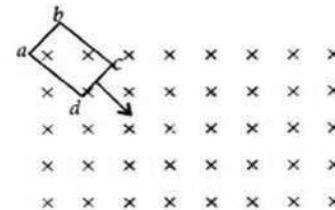
Q10. Predict the directions of induced currents in metal rings 1 and 2 lying in the same plane where current I in the wire is increasing steadily.


Ans: In metal ring 1, the induced current flows in the clockwise direction and in metal ring 2, the induced current flows in the anticlockwise direction.

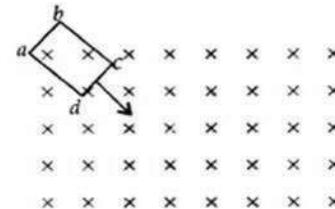
Q10. एक ही तल में स्थित धातु के छल्ले 1 और 2 में प्रेरित धाराओं की दिशा को बताएं जब तार में धारा। लगातार बढ़ रही है।


उत्तर: मेटल रिंग 1 में, प्रेरित धारा घड़ी की दिशा (clockwise direction) में प्रवाहित होगी और मेटल रिंग 2 में, प्रेरित धारा वामावर्ती दिशा (घड़ी की उल्टी दिशा) में प्रवाहित होगी।

Q11. Predict the directions of induced current in metal rings 1 and 2 when current I in the wire is steadily decreasing?


Ans: In metal ring 1, the induced current flows in an anticlockwise direction and in metal ring 2, the induced current flows in the Clockwise direction.

Q11. धातु के छल्लों 1 और 2 में प्रेरित धारा की दिशाओं की दिशा को बताएं जब तार में धारा। लगातार कम हो रही हो?


उत्तर: मेटल रिंग 1 में, प्रेरित धारा घड़ी की उल्टी दिशा में प्रवाहित होगी और मेटल रिंग 2 में, प्रेरित धारा घड़ी की दिशा (clockwise direction) में प्रवाहित होगी।

Q12. Predict the direction of the induced current in the rectangular loop abcd as it is moved into the region of a uniform magnetic field B directed normal to the plane of the loop.

Ans: The direction of the induced current in the given rectangular loop is anti-clockwise, i.e., cbadc.

Q12. आयताकार लूप abcd में प्रेरित धारा की दिशा बताएं जब यह एक समान चुंबकीय क्षेत्र B जो की लंबवत रूप से तल के नीचे की ओर है, में प्रवेश करता है।

उत्तर: दिए गए आयताकार लूप में प्रेरित धारा की दिशा घड़ी की उल्टी दिशा में अर्थात् cbadc है।

Q13. What are Eddy Currents?

Ans: If a piece of metal is placed in a varying magnetic field or rotated with high speed in an uniform magnetic field, then induced currents set up in the piece are like whirlpools of air, called eddy currents.

The magnitude of eddy currents is given by

$$I = -\frac{e}{R} = \frac{d\phi / dt}{R} \text{ where, } R \text{ is the resistance.}$$

Eddy currents are also known as Foucault's currents.

Q13. भंवर धाराएं (Eddy Currents) क्या हैं?

उत्तर: यदि धातु के एक टुकड़े को एक परिवर्तनीय चुंबकीय क्षेत्र में रखा जाता है या एक समान चुंबकीय क्षेत्र में उच्च गति से घुमाया जाता है, तो टुकड़े में हवा के भंवरों की तरह प्रेरित धारा उत्पन्न होती है, जिन्हें भंवर धाराएं कहा जाता है।

भंवर धाराओं का परिमाण को इस प्रकार से दर्शाया जाता है।

$$I = -\frac{e}{R} = \frac{d\phi / dt}{R} \text{ जहाँ, } R \text{ प्रतिरोध है।}$$

भंवर धाराएं को फौकॉल्ट धाराओं के रूप में भी जाना जाता है।

Q14. Name applications where eddy currents are used.

Ans: Applications of eddy currents:

1. Electromagnetic Damping
2. Magnetic brakes in trains
3. Induction Furnace
4. Electric Power Metres.

Q14. उन अनुप्रयोगों के नाम बताइए जहां भंवर धारा का उपयोग किया जाता है।

उत्तर: भंवर धाराओं के अनुप्रयोग:

1. विद्युत चुम्बकीय अवमंदन

2. रेलगाड़ियों में चुम्बकीय ब्रेक में

3. प्रेरण भट्टी में

4. इलेक्ट्रिक पावर मीटर में।

Q15. Define self-inductance of a coil. Write S.I. unit and its dimensional formula of coefficient of self-induction.

Ans: The phenomena of production of induced emf in a circuit due to change in current flowing on its own, is called self-induction. Due to this property it opposes the growth or decay of the current flowing through it.

The magnetic flux linked with a coil, $\phi = LI$

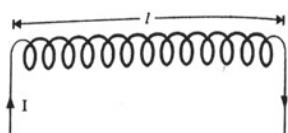
The induced emf in the coil, $e = -L \frac{dI}{dt}$

where, L = Coefficient of self-induction.

The SI unit of self-induction is henry (H) and its dimensional formula is $[ML^2 T^{-2} A^{-2}]$.

Q15. कुंडली के स्वप्रेरण को परिभाषित करें। स्वप्रेरण का गुणांक का S.I. मात्रक तथा विमीय सूत्र लिखिए।

उत्तर: किसी परिपथ में बहने वाली धारा में परिवर्तन के कारण प्रेरित विद्युत वाहक बल के उत्पन्न होने की परिघटना स्व-प्रेरण कहलाती है। इस गुण के कारण यह अपने में बहने वाली धारा की वृद्धि या क्षय का विरोध करता है।


कुंडली से जुड़ा चुंबकीय फ्लक्स को इस प्रकार से लिखा जा सकता है, $\phi = LI$

कुंडली में प्रेरित विद्युत वाहक बल को इस प्रकार से लिखा* जा सकता है। $e = -L \frac{dI}{dt}$ जहां, L = स्वप्रेरण का गुणांक।

स्व-प्रेरण की SI इकाई हेनरी (H) है और इसका विमीय सूत्र $[ML^2 T^{-2} A^{-2}]$ है।

Q16. Derive an expression for the self-inductance of a long air-cored solenoid of length and number of turns N.

Ans: Consider a long solenoid of length l , area of cross section A and number of turns per unit length n. Let I be the current flowing through the solenoid.

The magnetic field inside this solenoid is uniform and given by $B = \mu_0 n I$

Total number of turns in the solenoid $N = n l$

Now the magnetic flux linked with each turn of the solenoid $= B \times A = \mu_0 n I A$

So, Total magnetic flux linked with the whole solenoid,

$\Phi = \text{magnetic flux linked with each turn} \times \text{number of turns in the solenoid}$

$$\text{or, } \Phi = \mu_0 n I A \times N = \mu_0 n I A \times n l = \mu_0 n^2 I A l \quad \dots \text{(i)}$$

$$\text{Also, } \Phi = LI \quad \dots \text{(ii)}$$

From (i) and (ii), we get

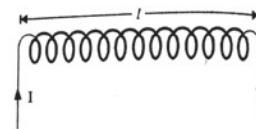
$$LI = \mu_0 n^2 I A l$$

$$\text{or, } L = \mu_0 n^2 A l \quad \dots \text{(iii)}$$

Since $n = N/l$, So eqn (iii) becomes.

$$L = (\mu_0 N^2 A) / l$$

Thus, self inductance of an air cored solenoid (L) depends on (i) the total number of turns (N) of the solenoid and (ii) the length (l) of the solenoid and (iii) the area of cross-section (A) of the solenoid.


Q16. एक l लंबाई और N घुमावों की संख्या वाले वायु-कोर परिनालिका के लिये स्व प्रेरण गुणांक के लिये व्यंजक प्राप्त कीजिए।

उत्तर: माना की l = एक लंबी परिनालिका की लंबाई

A = अनुप्रस्थ काट का क्षेत्रफल

n = प्रति इकाई लंबाई पर फेरों की संख्या है और

I = परिनालिका में प्रवाहित होने वाली धारा है।

इस परिनालिका के भीतर एक समान चुंबकीय क्षेत्र होगा जिसे इस प्रकार से दिखाया जा सकता है।

$$B = \mu_0 n I$$

परिनालिका में घुमावों की कुल संख्या $N = n l$

अब परिनालिका के प्रत्येक फेरे से जुड़ा चुंबकीय फ्लक्स $= B X A = \mu_0 n I A$

तो, संपूर्ण परिनालिका से जुड़ा कुल चुंबकीय फ्लक्स,

$\Phi = \text{परिनालिका में प्रत्येक फेरों से जुड़ा चुंबकीय प्रवाह} \times \text{फेरों की संख्या}$

$$\text{या, } \Phi = \mu_0 n I A X N = \mu_0 n I A X n l = \mu_0 n^2 I A l \quad \dots \text{(i)}$$

$$\text{साथ ही, } \Phi = LI \quad \dots \text{(ii)}$$

(i) और (ii) से, हम पाते हैं की,

$$LI = \mu_0 n^2 I A l$$

$$\text{या, } L = \mu_0 n^2 A$$

.....(iii)

$$\text{चूंकि } n = N/l,$$

अतः समीकरण (iii) इस प्रकार से दिखाया जा सकता है

$$L = (\mu_0 N^2 A)/l$$

इस प्रकार, वायु कोर वाली परिनालिका (L) का स्वप्रेरकत्व (i) परिनालिका के घुमावों की कुल संख्या (N) और (ii) परिनालिका की लंबाई (l) और (iii) परिनालिका के अनुप्रस्थ काट (A) का क्षेत्रफल पर निर्भर करता है।

Q17. Define mutual induction. Write S.I. unit and dimensional formula of coefficient of mutual induction.

Ans: The phenomena of production of induced emf in a circuit due to the change in magnetic flux in its neighboring circuit, is called mutual induction.

If two coils are coupled with each other, then magnetic flux linked with a coil (secondary coil)

$$\phi = MI$$

where, M is coefficient of mutual induction and I is current flowing through the primary coil.

The induced emf in the secondary coil,

$$e = -M \frac{dI}{dt}$$

where, $\frac{dI}{dt}$ is the rate of change of current through primary coil.

The unit of coefficient of mutual induction is henry (H) and its dimensional formula is $[ML^2 T^{-2} A^{-2}]$.

Q17. अन्योन्य प्रेरण को परिभाषित कीजिए। अन्योन्य प्रेरण का गुणांक का S.I. मात्रक तथा विमीय सूत्र लिखिए।

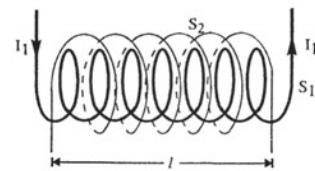
उत्तर: किसी परिपथ में उसके पड़ोसी परिपथ के चुंबकीय फ्लक्स में परिवर्तन के कारण प्रेरित विद्युत वाहक बल के उत्पन्न होने की परिघटना को अन्योन्य प्रेरण कहा जाता है।

यदि दो कुंडलियों एक दूसरे से चुम्बकीय क्षेत्र से जुड़ी हो, तो द्वितीयक कुंडली से जुड़ा चुम्बकीय प्रवाह को इस प्रकार से लिखा जा सकता है,

$$\phi = MI$$

जहां, M = अन्योन्य प्रेरण का गुणांक है और। प्राथमिक कुंडली के माध्यम से बहने वाली धारा है।

द्वितीयक कुंडल में प्रेरित विद्युत वाहक बल को इस प्रकार से लिखा जा सकता है।


$$e = -M \frac{dI}{dt}$$

जहां, $\frac{dI}{dt}$ प्राथमिक कॉइल में करंट के परिवर्तन की दर है।

अन्योन्य प्रेरण की SI इकाई हेनरी (H) है और इसका विमीय सूत्र $[ML^2 T^{-2} A^{-2}]$ है।

Q18. Derive an expression for coefficient of mutual induction of two long coaxial solenoids

Ans: Consider two solenoids S_1 and S_2 such that the solenoid S_2 completely surrounds the solenoid S_1 .

Let length of each solenoid be l and the area of cross section of each solenoid is A . N_1 and N_2 are the total number of turns of solenoid S_1 and S_2 respectively.

∴ Number of turns per unit length of solenoid S_1 is given by, $n_1 = \frac{N_1}{l}$

Number of turns per unit length of solenoid S_2 is given by,

$$n_2 = \frac{N_2}{l}$$

Let current I_1 flow through solenoid S_1 . Then magnetic field inside the solenoid S_1 is given by,

$$B_1 = \mu_0 n_1 I_1 = \mu_0 \frac{N_1}{l} I_1$$

So, Magnetic flux linked with each turn of solenoid S_2 is given by,

$$B_1 A = \mu_0 \frac{N_1}{l} I_1 A$$

Then total magnetic flux linked with N_2 turns of the solenoid S_2 is

$$\phi_2 = N_2 (B_1 A) = \mu_0 \frac{N_1}{l} I_1 A \times N_2 = \frac{\mu_0 N_1 N_2 I_1 A}{l} \quad \dots \dots \dots (i)$$

$$\text{Also, } \phi_2 = M_{12} I_1 \quad \dots \dots \dots (ii)$$

where, M_{12} is the mutual inductance of coil S_2 with respect to the coil S_1 .

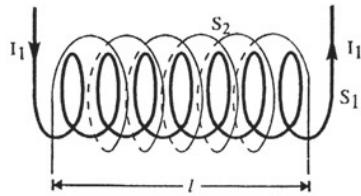
From (i) and (ii), we get

$$M_{12} I_1 = \frac{\mu_0 N_1 N_2 I_1 A}{l}$$

$$\text{So, } M_{12} = \frac{\mu_0 N_1 N_2 A}{l}$$

$$\text{Similarly, } M_{21} = \frac{\mu_0 N_1 N_2 A}{l}$$

, where M_{21} is the mutual inductance of coil S_1 with respect to the coil S_2 .


Clearly, $M_{21} = M_{12} = M$

If the two solenoids are wound on a magnetic substance of a relative permeability μ_r then the mutual inductance is given by

$$M = \frac{\mu_0 \mu_r N_1 N_2 A}{l}$$

Q18. दो लम्बी परिनालिकाओं के अन्योन्य गुणांक के लिए व्यंजक व्युत्पन्न कीजिए।

उत्तर: माना की S_1 और S_2 दो परिनालिकायें हैं और परिनालिका S_2 पूरी तरह से परिनालिका S_1 को घेरे हुए हैं।

मान लीजिए कि प्रत्येक परिनालिका की लंबाई l है और प्रत्येक परिनालिका का अनुप्रस्थ काट का क्षेत्रफल A है। N_1 और N_2 क्रमशः परिनालिका S_1 और S_2 के घुमावों की कुल संख्या है।

∴ परिनालिका S_1 की प्रति इकाई लंबाई में फेरों की संख्या इस प्रकार दी जा सकती है।

$$n_1 = \frac{N_1}{l}$$

परिनालिका S_2 की प्रति इकाई लंबाई में फेरों की संख्या इस प्रकार दी जा सकती है।

$$n_2 = \frac{N_2}{l}$$

माना की परिनालिका S_1 के माध्यम धारा I_1 प्रवाहित हो रही है, तब परिनालिका S_2 के अंदर चुंबकीय क्षेत्र इस प्रकार दी जा सकती है।

$$B_1 = \mu_0 n_1 I_1 = \mu_0 \frac{N_1}{l} I_1$$

इसलिए, परिनालिका S_2 के प्रत्येक घुमावों से जुड़ा चुंबकीय प्रवाह इस प्रकार दी जा सकती है।

$$B_1 A = \mu_0 \frac{N_1}{l} I_1 A$$

फिर परिनालिका S_2 के N_2 घुमावों से जुड़ा कुल चुंबकीय प्रवाह इस प्रकार दी जा सकती है।

$$\phi_2 = N_2 (B_1 A) = \mu_0 \frac{N_1}{l} I_1 A \times N_2 = \frac{\mu_0 N_1 N_2 I_1 A}{l} \quad \dots \dots \dots (i)$$

$$\text{Also, } \phi_2 = M_{12} I_1 \quad \dots \dots \dots (ii)$$

जहां, M_{12} कॉइल S_2 का कुंडली S_1 के सापेक्ष अन्योन्य प्रेरण है।

समीकरण (i) और (ii) से, हम पाते हैं की,

$$M_{12} I_1 = \frac{\mu_0 N_1 N_2 I_1 A}{l}$$

$$\text{So, } M_{12} = \frac{\mu_0 N_1 N_2 A}{l}$$

$$\text{Similarly, } M_{21} = \frac{\mu_0 N_1 N_2 A}{l}$$

जहां M_{21} कॉइल S_1 का कुंडली S_2 के सापेक्ष अन्योन्य प्रेरण है।

स्पष्ट रूप से, $M_{21} = M_{12} = M$

यदि दो परिनालिका एक सापेक्ष पारगम्यता μ , के चुंबकीय पदार्थ पर लपेटे जाते हैं तो अन्योन्य प्रेरण इस प्रकार दिया जाता है।

$$M = \frac{\mu_0 \mu_r N_1 N_2 A}{l}$$

Q19. How does the mutual inductance of a pair of coils change when

(i) distance between the coils is increased and

(ii) number of turns in the coils is increased

Ans: (i) Mutual inductance decreases because flux linked with the secondary coil decreases.

(ii) $M = \frac{\mu_0 \mu_r N_1 N_2 A}{l}$ so when N_1 and N_2 increase, mutual inductance (M) increases.

जब (i) कुंडलियों के बीच की दूरी बढ़ाई जाती है और (ii) कुंडलियों में घुमावों की संख्या बढ़ाई जाती है, तो कुंडलियों के एक जोड़े का अन्योन्य प्रेरण कैसे बदलता है।

उत्तर: (i) अन्योन्य प्रेरण घटता है, क्योंकि द्वितीयक कुंडली से जुड़ा फ्लक्स घटता है।

(ii) $M = \frac{\mu_0 \mu_r N_1 N_2 A}{l}$ इसलिए जब N_1 और N_2 बढ़ते हैं, अन्योन्य प्रेरण (M) बढ़ता है।

Q20. On what factors mutual inductance of a pair of coils depends.

Ans: The value of mutual inductance of two coils depends upon :

(i) geometry of two coils i.e. size, shape and number of turns (N_1 and N_2) of the coils.

(ii) nature of the material on which the two coils are wound.

(iii) the distance between the two coils.

(iv) the relative placement of two coils.

Q20. कुंडलियों के एक जोड़े का अन्योन्य प्रेरण किन कारकों पर निर्भर करता है।

उत्तर: दो कुंडलियों के अन्योन्य प्रेरकत्व का मान निम्न बातों पर निर्भर करता है :

(i) दो कुंडलियों की ज्यामिति अर्थात् कुंडलियों का आकार, आकृति और घुमावों की संख्या (N_1 और N_2)।

(ii) उस पदार्थ की प्रकृति जिस पर दो कुंडलियाँ लिपटी होती हैं।

(iii) दो कुंडलियों के बीच की दूरी।

(iv) दो कुंडलियों का आपेक्षिक स्थान।

Q21. Show that energy stored in an inductor L when a current I is established through it is given by

$$U = \frac{1}{2} L I^2$$

Ans: Let I be the current through the inductor L . At any instant the current rises at the rate di/dt , so the induced emf

$$e = -L \frac{di}{dt}$$

Work done against the induced emf in small time dt is

$$dW = |e| Idt = LI \frac{dI}{dt} dt = LI dI$$

Total work done in building up the current from 0 to I is

$$W = \int dW = \int_0^I LIdI = L \int_0^I IdI = L \left[\frac{I^2}{2} \right]_0^I = \frac{1}{2} LI^2$$

This work done is stored as the magnetic field energy U in the inductor

$$\therefore U = \frac{1}{2} LI^2$$

Q21. सिद्ध करें की एक इंडक्टर L जिसमें विद्युत धारा I प्रवाह कर रही हो तो उसमें संग्रहित ऊर्जा को निम्न प्रकार से दर्शाया जा सकता है।

$$U = \frac{1}{2} LI^2$$

उत्तर: माना की प्रेरित L में विद्युत धारा I प्रवाहित हो रही है। किसी भी क्षण t पर धारा dt की दर से बढ़ती है, तो प्रेरित e.m.f. को इस प्रकार से लिखा जा सकता है।

$$e = -L \frac{dI}{dt}$$

अल्प समय dt में प्रेरित e.m.f. के विरुद्ध में किया गया कार्य इस प्रकार से लिखा जा सकता है।

$$dW = |e| Idt = LI \frac{dI}{dt} dt = LI dI$$

0 से। तक धारा के निर्माण में किया गया कुल कार्य इस प्रकार से लिखा जा सकता है।

$$W = \int dW = \int_0^I LIdI = L \int_0^I IdI = L \left[\frac{I^2}{2} \right]_0^I = \frac{1}{2} LI^2$$

यह कार्य कुंडली में चुंबकीय ऊर्जा U के रूप में संग्रहित हो जाता है।

$$\therefore U = \frac{1}{2} LI^2$$

Q22. Two coils of self inductance L_1 and L_2 are connected in series. What will be the equivalent self-inductance of this combination?

$$\text{Ans: } L_{eq} = L_1 + L_2$$

Q22. L_1 तथा L_2 स्वप्रेरकत्व की दो कुण्डलियों को श्रेणीक्रम में जोड़ा जाता है। इस संयोजन का तुल्य स्वप्रेरकत्व क्या होगा?

$$\text{उत्तर: } L_{eq} = L_1 + L_2$$

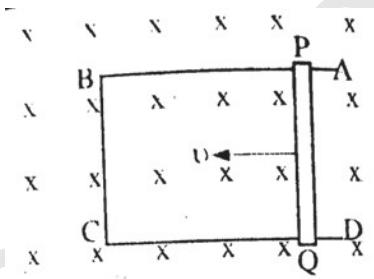
Q23. Two coils of self inductance L_1 and L_2 are connected in parallel. What will be the equivalent self-inductance of this combination?

$$\text{Ans:}$$

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2}$$

$$\text{so, } L_{eq} = \frac{L_1 \times L_2}{L_1 + L_2}$$

Q23. L_1 तथा L_2 स्वप्रेरकत्व की दो कुण्डलियों को समान्तर क्रम में जोड़ा गया है। इस संयोजन का तुल्य स्वप्रेरकत्व क्या होगा?


उत्तर:

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2}$$

$$\text{so, } L_{eq} = \frac{L_1 \times L_2}{L_1 + L_2}$$

Q24. A conducting rod moves with a certain velocity in a uniform magnetic field. Derive an expression for the induced electromotive force between the ends of the rod.

Ans: Consider a conductor PQ of length l moving freely in a uniform magnetic field \vec{B} with uniform velocity v on a rectangular conductor ABCD.

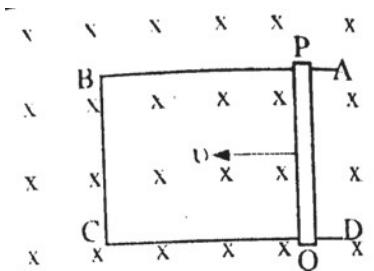
Let any arbitrary positive charge q in the conductor also move in the field with the same velocity.

Magnitude of Lorentz force on this charge, $F_m = qvB$

Direction of this force on the charge as per Fleming's left hand Rule comes out to be along PQ towards Q.

Work done in moving the charge from P to Q is given by,

$$W = F_m \times PQ = (qvB)l$$


Electromotive force (e.m.f.) is defined as the work done per unit charge so, emf across conductor PQ is given by,

$$\epsilon = \frac{W}{q} = \frac{qvBl}{q} = vBl$$

$$\text{i.e., } \epsilon = vBl$$

Q24. कोई चालक छड़ निश्चित वेग से समरूप चुम्बकीय क्षेत्र में गति करती है। छड़ के सिरों के मध्य प्रेरित विद्युत वाहक बल के लिए व्यंजक व्युत्पन्न कीजिए।

उत्तर: माना की l लंबाई के एक सुचालक PQ जो एक समान चुम्बकीय क्षेत्र \vec{B} में एक समान वेग v के साथ एक आयताकार सुचालक ABCD पर स्वतंत्र रूप से धूम रहा है।

मान लीजिए कि सुचालक में कोई धनात्मक आवेश q भी उसी वेग से चुम्बकीय क्षेत्र में गति कर रहा है।

इस आवेश पर लोरेंट्ज बल का परिमाण इस प्रकार से दिया जा सकता है।

$$F_m = qvB$$

फ्लेमिंग के बाएं हाथ के नियम के अनुसार आवेश पर इस बल की दिशा PQ के अनुदिश Q की ओर होंगी।

आवेश को P से Q तक ले जाने में किया गया कार्य इस प्रकार दिया जाता है।

$$W = F_m \times PQ = (qvB)l$$

विद्युत वाहक बल (e.m.f.) को प्रति इकाई आवेश पर किए गए कार्य के रूप में परिभाषित किया जाता है, इसलिए छड़ चालक PQ के सिरों के मध्य प्रेरित विद्युत वाहक बल (e.m.f.) को इस प्रकार से दिया जा सकता है।

$$\epsilon = \frac{W}{q} = \frac{qvBl}{q} = vBl$$

i.e., $\epsilon = vBl$

© JCERT
not to be republished