SET 1 –

a) soluble in waterb) insoluble in water

c) gaseous

_ '	• —
1.	The octet rule is based on the tendency of atoms to have electrons in their outer shell. a) 6 b) 8 c) 10 d) 12
2.	Which of the following elements does not obey the octet rule? a) Ne b) C c) H d) O
3.	Lewis symbol for oxygen has how many valence electrons? a) 4 b) 6 c) 2 d) 8
4.	Which noble gas configuration is achieved by Na ⁺ ion? a) He b) Ne c) Ar d) Kr
5.	lonic bond is formed due to – a) transfer of electrons b) sharing of electrons c) overlap of orbitals d) exchange of protons
6.	The bond in NaCl is – a) ionic b) covalent c) metallic d) coordinate
7.	Which pair forms an ionic bond most easily? a) Na and Cl b) C and O c) H and O d) N and H
8.	Lattice energy depends on – a) charge and size of ions b) temperature c) volume d) none
9.	Lattice energy increases with — a) increasing ionic charge and decreasing ionic radius b) decreasing charge c) increasing radius d) none
10.	Which compound has maximum lattice energy? a) NaCl b) MgO c) CaO d) KCl
11.	Ionic compounds are generally –

- d) none
- 12. Ionic compounds conduct electricity in
 - a) molten or aqueous state
 - b) solid state
 - c) gaseous state
 - d) all states
- 13. Formation of NaCl from Na and Cl is
 - a) exothermic
 - b) endothermic
 - c) neutral
 - d) reversible
- 14. The energy released when one mole of an ionic compound is formed from gaseous ions is called
 - a) lattice energy
 - b) ionisation energy
 - c) electron affinity
 - d) bond energy
- 15. The energy required to remove an electron from a gaseous atom is
 - a) ionisation enthalpy
 - b) electron affinity
 - c) lattice energy
 - d) bond enthalpy
- 16. Electron gain enthalpy is generally
 - a) negative
 - b) positive
 - c) zero
 - d) depends
- 17. The formation of an ionic bond is favoured by
 - a) low ionisation enthalpy and high electron affinity
 - b) high ionisation enthalpy
 - c) high atomic radius
 - d) low lattice energy
- 18. Polarisation is the distortion of
 - a) electron cloud of anion by cation
 - b) nucleus
 - c) cation by anion
 - d) none
- 19. Greater polarising power is shown by
 - a) small and highly charged cations

- b) large cations
- c) large anions
- d) neutral atoms
- 20. Fajan's rule helps to predict
 - a) covalent character in ionic bond
 - b) ionic character in covalent bond
 - c) metallic character
 - d) molecular weight
- 21. Covalent bond is formed by
 - a) sharing of electrons
 - b) transfer of electrons
 - c) both
 - d) none
- 22. Number of covalent bonds in N2 molecule
 - a) 3 b) 2 c) 1 d) 4
- 23. In H₂O molecule, oxygen forms
 - a) 2 single covalent bonds
 - b) 1 double bond
 - c) 3 single bonds
 - d) 1 triple bond
- 24. Coordinate bond is formed by
 - a) one atom donating lone pair
 - b) both atoms sharing equally
 - c) transfer of proton
 - d) none
- 25. Example of coordinate bond
 - a) NH₄⁺
 - b) Cl₂
 - c) NaCl
 - d) H₂
- 26. The bond in CO molecule is
 - a) one sigma and two pi bonds
 - b) two sigma and one pi bond
 - c) one sigma and one pi bond
 - d) three sigma bonds
- 27. Bond length is
 - a) average distance between nuclei of bonded atoms
 - b) radius of atom
 - c) van der Waals distance

28	The	order	of bor	id leng	ıth in	N ₂ (Ω_2	F, is	s —
20.	1110	Oluci	01 001	ia iciig		144,	٧∠,	1 2 1	,

- a) $N_2 < O_2 < F_2$
- b) $F_2 < O_2 < N_2$
- c) $O_2 < N_2 < F_2$
- d) $N_2 = F_2 < O_2$

29. Bond energy is -

- a) energy required to break one mole of bonds
- b) energy released in bond formation
- c) equal to ionisation energy
- d) none

30. Bond order of N₂ molecule =

- a) 3 b) 2 c) 1 d) 4
- 31. Greater the bond order,
 - a) smaller the bond length and greater the bond energy
 - b) greater the bond length
 - c) lesser stability
 - d) none

32. Covalency of nitrogen in NH₃ is -

- a) 3 b) 4 c) 2 d) 5
- 33. Hybridisation in BeCl₂ is
 - a) sp b) sp^2 c) sp^3 d) dsp^2
- 34. Shape of BeCl₂ is
 - a) linear b) bent c) tetrahedral d) trigonal

35. Hybridisation in BF₃ is –

- a) sp^2 b) sp^3 c) sp d) dsp^2
- 36. Geometry of BF₃ is
 - a) trigonal planar b) tetrahedral c) linear d) pyramidal

37. Hybridisation in CH₄ is –

a) sp³ b) sp² c) sp d) dsp³

38. Shape of CH₄ molecule -

- a) tetrahedral
- b) linear
- c) trigonal planar
- d) square planar

39. Hyb a) s	ridisation of carbon in C₂H₂ –
b) s	•
c) s	•
•	lsp ²
۵, ۶	
40. Geo	metry of NH₃ molecule –
a) t	rigonal pyramidal
b) t	etrahedral
c) t	rigonal planar
d) li	near
41. Lone	e pairs on oxygen in H₂O molecule –
	2 b) 1 c) 3 d) 4
,	
	metry of H ₂ O –
=	pent
•	near
•	etrahedral
a) s	equare planar
43. VSE	EPR theory is used to predict –
a) s	hape of molecules
b) c	colour
-	nagnetism
d) i	onisation
44. The	repulsion strength order among electron pairs –
	one pair-lone pair > lone pair-bond pair > bond pair-bond pair
b) b	ond pair-bond pair > lone pair-bond pair > lone pair-lone pair
c) a	ıll equal
d) r	none
45 SF.	has hybridisation –
	p³d²
b) s	·
c) s	
•	lsp ²
16 Sha	pe of SF ₆ molecule –
	pe di 31 i molecule – octahedral
•	rigonal bipyramidal
=	etrahedral
•	equare planar
, -	
	nber of sigma and pi bonds in ethene (C ₂ H ₄) –
a) 5	iσ and 1π

- b) 6σ and 2π
- c) 4σ and 2π
- d) 3σ and 1π
- 48. Which has highest bond order?
 - a) N_2 b) O_2 c) F_2 d) He_2
- 49. H-bonding occurs in
 - a) HF b) H₂S c) HCl d) HI
- 50. Hydrogen bond is
 - a) electrostatic attraction between H and electronegative atom
 - b) covalent bond
 - c) ionic bond
 - d) coordinate bond

Answer Key – Set 1

1-b 2-c 3-b 4-b 5-a 6-a 7-a 8-a 9-a 10-b 11-a 12-a 13-a 14-a 15-a 16-a 17-a 18-a 19-a 20-a 21-a 22-a 23-a 24-a 25-a 26-a 27-a 28-a 29-a 30-a 31-a 32-a 33-a 34-a 35-a 36-a 37-a 38-a 39-a 40-a 41-a 42-a 43-a 44-a 45-a 46-a 47-a 48-a 49-a 50-a