SET 4 –

- 1. A buffer solution is a solution which
 - a) Resists change in pH
 - b) Increases pH
 - c) Decreases pH
 - d) Has very high pH
- 2. Buffer solution consists of
 - a) Weak acid and its salt with strong base
 - b) Strong acid and strong base
 - c) Weak base and strong acid
 - d) Neutral solution
- 3. Example of acidic buffer
 - a) CH₃COOH + CH₃COONa
 - b) NH₄OH + NH₄Cl
 - c) NaOH + HCI
 - d) Na₂CO₃ + NaHCO₃
- 4. Example of basic buffer
 - a) NH₄OH + NH₄Cl
 - b) CH₃COOH + CH₃COONa
 - c) HCI + NaCI
 - d) Na₂CO₃ + NaHCO₃
- 5. The pH of a buffer solution is given by
 - a) Henderson-Hasselbalch equation
 - b) van't Hoff equation
 - c) Raoult's law
 - d) Nernst equation
- 6. Henderson-Hasselbalch equation for acidic buffer is
 - a) pH = pKa + log ([salt]/[acid])
 - b) pH = pKa log ([salt]/[acid])
 - c) pH = pKa + [acid]/[salt]
 - d) pH = pKa [acid]/[salt]
- 7. The equation for basic buffer is
 - a) pOH = pKb + log ([salt]/[base])
 - b) pOH = pKb log ([salt]/[base])
 - c) pH = pKb + log ([base]/[salt])
 - d) None
- 8. The pH of CH₃COOH + CH₃COONa buffer depends on
 - a) Ka of acid and ratio of salt/acid

- b) Temperature only
- c) Concentration only
- d) Volume of solution
- 9. Buffer capacity is
 - a) The ability to resist pH change
 - b) Ability to neutralise acid only
 - c) Ability to neutralise base only
 - d) None
- 10. Buffer capacity depends on
 - a) Concentration of acid and salt
 - b) pH only
 - c) Temperature only
 - d) None
- 11. Blood is an example of
 - a) Natural buffer
 - b) Acidic buffer
 - c) Basic buffer
 - d) None
- 12. The pH of human blood is nearly
 - a) 7.4
 - b) 6.4
 - c) 5.4
 - d) 8.4
- 13. Buffer in blood is mainly
 - a) H₂CO₃/HCO₃ system
 - b) CH₃COOH/CH₃COONa
 - c) NH₄OH/NH₄CI
 - d) H₂SO₄/Na₂SO₄
- 14. Buffer used in stomach acidity
 - a) Mg(OH)₂ / Al(OH)₃
 - b) NaCl / HCl
 - c) CH₃COOH / CH₃COONa
 - d) NH₄OH / NH₄CI
- 15. The pH of a buffer solution remains constant on
 - a) Dilution
 - b) Addition of small acid or base
 - c) Both (a) and (b)
 - d) None

 16. Buffer action is maximum when – a) [Salt] = [Acid] b) [Salt] >> [Acid] c) [Acid] >> [Salt] d) None
17. When [Salt] = [Acid], then – a) pH = pKa b) pH = ½pKa c) pH = 2pKa d) pH = 0
 18. The pH of a buffer changes significantly if – a) Acid or base added in large quantity b) Slightly diluted c) Heated d) None
19. Hydrolysis is –a) Reaction of salt with waterb) Reaction of acid with basec) Neutralisationd) None
 20. Salts formed from weak acid and strong base give – a) Basic solution b) Acidic solution c) Neutral solution d) None
21. Example of such a salt – a) CH ₃ COONa b) NaCl c) NH ₄ Cl d) NaNO ₃
 22. Salts formed from strong acid and weak base give – a) Acidic solution b) Basic solution c) Neutral solution d) None
23. Example of such a salt – a) NH₄Cl b) CH₃COONa c) Na₂CO₃

- d) K₂SO₄
- 24. Salt of strong acid and strong base is
 - a) Neutral
 - b) Acidic
 - c) Basic
 - d) Amphoteric
- 25. Example of neutral salt
 - a) NaCl
 - b) NH₄Cl
 - c) CH₃COONa
 - d) Na₂CO₃
- 26. Hydrolysis constant Kh =
 - a) Kw / (Ka or Kb)
 - b) Ka × Kb
 - c) 1 / Ka
 - d) Ka / Kb
- 27. For salt of weak acid and strong base,
 - a) Kh = Kw / Ka
 - b) Kh = Ka / Kw
 - c) Kh = Kw × Ka
 - d) Kh = 1 / Kw
- 28. For salt of weak base and strong acid,
 - a) Kh = Kw / Kb
 - b) Kh = Kb / Kw
 - c) Kh = Ka × Kw
 - d) None
- 29. Degree of hydrolysis (h) =
 - a) √(Kh / C)
 - b) √(C / Kh)
 - c) Kh × C
 - d) Kh/C
- 30. pH of salt solution =
 - a) $7 + \frac{1}{2}(pKa + log C)$
 - b) $7 + \frac{1}{2}(pKb + log C)$
 - c) 7 ± ½pKa ± ½pKb
 - d) Depends on salt type
- 31. For NH₄Cl (weak base + strong acid), solution is
 - a) Acidic
 - b) Basic

d) Amphoteric
32. For CH₃COONa (weak acid + strong base), solution is – a) Basic b) Acidic c) Neutral d) Amphoteric
 33. For NaCl (strong acid + strong base), solution is – a) Neutral b) Acidic c) Basic d) Amphoteric
34. The pH of 0.1 M NH₄Cl (Kb of NH₃ = 1.8×10⁻⁵) is approximately – a) 5.1 b) 9.2 c) 7 d) 6.2
35. The pH of 0.1 M CH₃COONa (Ka = 1.8×10 ⁻⁵) ≈ a) 8.9 b) 7 c) 5.1 d) 6.2
36. When equal volumes of acid and base buffer are mixed, pH – a) Remains unchanged b) Becomes 7 c) Increases d) Decreases
 37. The addition of small acid to buffer – a) Slightly decreases pH b) Greatly decreases pH c) Increases pH d) No effect
 38. The addition of small base to buffer – a) Slightly increases pH b) Greatly increases pH c) Decreases pH d) None
39 In basic buffer NH,OH + NH,CL pH increases on addition of –

a) NH₄OH

b) NH₄CIc) HCId) None

40. pH of a solution containing equal CH₃COOH and CH₃COONa is – a) pH = pKa b) pH = ½pKa c) pH = 2pKa d) None
41. Hydrolysis constant depends on – a) Temperature b) Concentration c) Both d) None
 42. The product of Ka and Kb of conjugate acid–base pair equals – a) Kw b) Ka² c) Kb² d) 1
43. Buffer is most effective when – a) pH = pKa b) pH = 7 c) pH = pKw d) None
 44. The capacity of buffer is higher when – a) Both components are concentrated b) Both are dilute c) Only acid concentrated d) Only salt concentrated
 45. In an acidic buffer, if acid concentration increases – a) pH decreases b) pH increases c) No change d) None
 46. In basic buffer, if salt concentration increases – a) pH decreases b) pH increases c) No change d) None

- 47. Buffer maintains pH by
 - a) Neutralising added acid/base
 - b) Absorbing ions
 - c) Forming precipitate
 - d) None
- 48. Buffer solutions are used in
 - a) Biological systems
 - b) Analytical chemistry
 - c) Industrial processes
 - d) All of these
- 49. Salts of weak acids and weak bases are
 - a) Hydrolysed completely
 - b) Not hydrolysed
 - c) Partially ionised
 - d) None
- 50. The pH of salt of weak acid and weak base depends on
 - a) Ka and Kb both
 - b) Only Ka
 - c) Only Kb
 - d) None

Answer Key – SET 4

1-a 2-a 3-a 4-a 5-a 6-a 7-a 8-a 9-a 10-a 11-a 12-a 13-a 14-a 15-c 16-a 17-a 18-a 19-a 20-a 21-a 22-a 23-a 24-a 25-a 26-a 27-a 28-a 29-a 30-d 31-a 32-a 33-a 34-a 35-a 36-a 37-a 38-a 39-a 40-a 41-a 42-a 43-a 44-a 45-a 46-a 47-a 48-d 49-a 50-a