

10. Name the diode given in the figure

a) ZENER b) LED
c) LDR d) none of these

चित्र में दिए गए डायोड का नाम बताएं।

a) ZENER b) LED
c) LDR d) इनमें से कोई नहीं

Ans- a)

Subjective Questions/विषयनिष्ठ प्रश्न

1. What is a semiconductor?

Ans- The materials in which the electrical conductivity lies between conductors and insulators are called semiconductors. The electrical conductivity of a semiconductor increases, when we add impurities and by increasing the temperature and it is contrary to the metals. They have negative temperature Coefficient of resistance and they are formed by covalent bonds.

1. अर्धचालक क्या हैं?

उत्तर- जिन सामग्रियों में विद्युत चालकता कंडक्टरों और इंसुलेटर के बीच होती है उन्हें अर्धचालक कहा जाता है। अर्धचालक की विद्युत चालकता बढ़ जाती है, जब हम अशुद्धियों को मिलाते हैं और तापमान में वृद्धि करते हैं और यह धातुओं के विपरीत होता है। उनके पास नकारात्मक तापमान प्रतिरोध का गुणांक होता है और ये सहसंयोजक बंधों द्वारा बनते हैं।

2. What are intrinsic semiconductors?

Ans- A semiconductor in which holes and electrons are created only by thermal excitation across the energy gap is called an intrinsic semiconductor. A pure crystal of silicon or germanium is an intrinsic semiconductor. In an intrinsic semiconductor the number of holes in the valence band is equal to the number of electrons in the conduction band. The Fermi level for an intrinsic semiconductor lies midway in the forbidden gap.

2. नैंज़ अर्धचालक क्या हैं?

उत्तर- एक सेमीकंडक्टर जिसमें ऊर्जा अंतराल के पार केवल थर्मल उत्तेजना द्वारा केवल रिवितयां और इलेक्ट्रॉन बनाए जाते हैं नैंज़ सेमीकंडक्टर कहलाते हैं। सिलिकॉन या जर्मनियम का शुद्ध क्रिस्टल एक नैंज़ अर्धचालक है। एक नैंज़ अर्धचालक में वैलेंस बैंड में रिवितयां की संख्या चालन बैंड में इलेक्ट्रॉनों की संख्या के बराबर होती है। नैंज़ अर्धचालक के लिए फर्मी स्तर वर्जित अंतर के बीच में स्थित होता है।

3. What are extrinsic semiconductors? (or) What is the effect of impurity states over intrinsic semiconductor?

Ans-

It is an impure semiconductor made by doping process thereby reducing the band gap up to 0.01 eV.

In the case of n-type semiconductor, the donor energy level is very close to the unfilled energy band (Conduction band). So it can easily donate an electron to that unfilled state.

In the case of P-type semiconductor, the acceptor energy level is very close to the filled energy band (Valence band). So it can easily accept the electrons from the filled state.

3.

बाह्य अर्धचालक क्या होते हैं? (या) आंतरिक अर्धचालक पर अशुद्धता की स्थिति का क्या प्रभाव होता है?

उत्तर-

यह डोपिंग प्रक्रिया द्वारा बनाया गया एक अशुद्ध सेमीकंडक्टर है जिससे बैंड गैप 0.01 eV तक हो जाता है।

n-टाइप सेमीकंडक्टर के मामले में, डोनर एनर्जी लेवल अपर्ण ऊर्जा बैंड (कंडक्शन बैंड) के बहुत करीब होता है। तो यह आसानी से कंडक्शन बैंड में एक इलेक्ट्रॉन दान कर सकता है।

p-टाइप सेमीकंडक्टर के मामले में, स्वीकर्ता ऊर्जा स्तर भरे हुए ऊर्जा बैंड (वैलेंस बैंड) के बहुत करीब होता है। तो यह भरे हुए ऊर्जा बैंड से इलेक्ट्रॉनों को आसानी से स्वीकार कर सकता है।

4.

Differentiate n-type and p-type Semiconductors.

N-type

1. Impurity atom is pentavalent
2. Donor level lies close to the bottom of the conduction band
3. Electrons are the majority carriers and holes are the minority carriers

P-type

1. Impurity atom is trivalent
2. Acceptor level lies close to the top of the valence band.
3. Holes are the majority carriers and electrons are the minority carriers.

n-टाइप और p-टाइप सेमीकंडक्टर में अंतर करें।

n-टाइप

1. अशुद्धि परमाणु पञ्चसंयोजक है
2. डोनर लेवल कंडक्शन बैंड के नीचे के करीब होता है
3. इलेक्ट्रॉन बहुसंख्यक वाहक होते हैं और छिद्र अल्पसंख्यक वाहक होते हैं

p-टाइप

1. अशुद्धि परमाणु त्रिसंयोजक है
2. स्वीकार्य स्तर वैलेंस बैंड के शीर्ष के करीब स्थित होता है।
3. होल्स बहुसंख्यक वाहक होते हैं और इलेक्ट्रॉन अल्पसंख्यक वाहक होते हैं।

5.

What are donor and acceptor impurities?

Ans-

A semiconductor in which the impurity atoms are added by doping process is called Extrinsic semiconductor. The addition of impurities increases the carrier concentration and conductivity. There are two types of impurities.

1. Donor impurity which leads to N-type semiconductor.
2. Acceptor impurity which leads to P-type semiconductor.

Donor impurity means it donates the electron to the semiconductor materials and Acceptor impurity means

it is ready to accept an electron to form the covalent bond in semiconductor materials.

5. दाता और ग्राही अशुद्धियाँ क्या हैं?

उत्तर- जिस सेमीकंडक्टर में डोपिंग प्रक्रिया द्वारा अशुद्धि परमाणु जुड़ते हैं, उसे एक्सट्रिसिक सेमीकंडक्टर (वाह्य अर्धचालक) कहते हैं। अशुद्धियों से, अतिरिक्त वाहक सांद्रता और सेमीकंडक्टर की चालकता बढ़ जाती है। अशुद्धियाँ दो प्रकार की होती हैं।

1. दाता अशुद्धता जो एन-टाइप सेमीकंडक्टर बनाती है।
2. स्वीकार्य अशुद्धता जो पी-टाइप सेमीकंडक्टर बनाती है।

दाता अशुद्धता का अर्थ है कि यह अर्धचालक सामग्री को इलेक्ट्रॉन दान करता है और स्वीकार्ता अशुद्धता का अर्थ है कि यह अर्धचालक सामग्री में सहसंयोजक बंधन बनाने के लिए एक इलेक्ट्रॉन को स्वीकार करने के लिए तैयार होता है।

6. What are the differences between a conductor and a semiconductor?

Ans- **Conductor**

1. The conductor is a material which has low resistivity
2. They will not behave as an insulator at any temperature.
3. They have positive coefficient of resistance

Semiconductor

1. The semiconductor is a material which has resistivity lying between the conductor and an insulator.
2. The pure form of semiconductor can behave as an insulator at zero Kelvin.
3. They have a negative temperature coefficient of resistance.

6. कंडक्टर और अर्धचालक के बीच क्या अंतर हैं?

उत्तर- **कंडक्टर**

1. कंडक्टर एक ऐसी सामग्री है जिसकी प्रतिरोधकता कम होती है
2. वे किसी भी तापमान पर एक विसंवाहक के रूप में व्यवहार नहीं करते।
3. उनके प्रतिरोध का गुणांक धनात्मक होता है।

सेमीकंडक्टर

1. सेमीकंडक्टर एक ऐसी सामग्री है जिसकी प्रतिरोधकता कंडक्टर और एक इन्सुलेटर के बीच होती है।
2. अर्धचालक का शुद्ध रूप जीरो केल्विन पर एक कुचालक के रूप में व्यवहार कर सकता है।
3. उनके प्रतिरोध का तापमान गुणांक ऋणात्मक होता है।

7. In half-wave rectification, what is the output frequency if the input frequency is 50 Hz. What is the output frequency of a full-wave rectifier for the same input frequency.

Ans- Given Input frequency = 50 Hz

For a half-wave rectifier, the output frequency is equal to the input frequency.

Therefore output frequency for a half-wave rectifier = 50 Hz

For a full-wave rectifier, the output frequency is twice the input frequency.

Therefore output frequency for a full-wave rectifier = $2 \times 50 = 100$ Hz

7. अर्ध तरंगी दिष्टकरण में यदि निवेश आवृत्ति 50Hz है तो

निर्गम आवृत्ति क्या है ? सामान निवेश आवृत्ति हेतु पूर्ण तरंग दिष्टकारी की निर्गम आवृत्ति क्या है ?

उत्तर-

दिया गया इनपुट फ्रीक्वेंसी (निवेश आवृत्ति) = 50 हर्ट्ज

एक अर्ध तरंग दिष्टकारी के लिए, आउटपुट फ्रीक्वेंसी (निर्गम आवृत्ति) इनपुट फ्रीक्वेंसी के बराबर होती है।

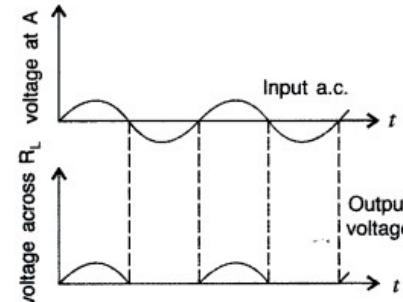
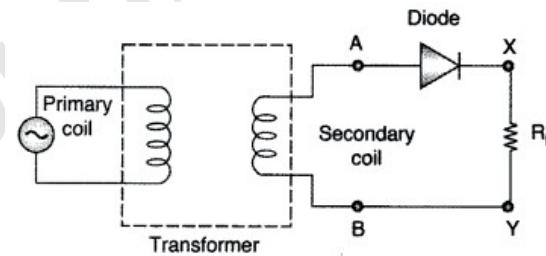
अतः एक अर्ध तरंग दिष्टकारी के लिए आउटपुट फ्रीक्वेंसी = 50 हर्ट्ज

पूर्ण तरंग दिष्टकारी के लिए, आउटपुट फ्रीक्वेंसी इनपुट फ्रीक्वेंसी से दोगुनी होती है।

अतः पूर्ण तरंग दिष्टकारी के लिए आउटपुट फ्रीक्वेंसी = $2 \times 50 = 100$ हर्ट्ज।

8.

Ans-



Explain, with the help of a circuit diagram, the working of a p-n junction diode as a half-wave rectifier.

Rectifier- A rectifier is a circuit which converts an alternating current into direct current.

p-n diode as a half wave rectifier-

A half wave rectifier consists of a single diode as shown in the circuit diagram. The secondary of the transformer gives the desired a.c. voltage across A and B.

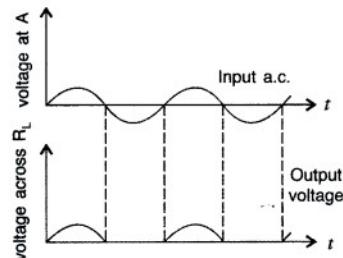
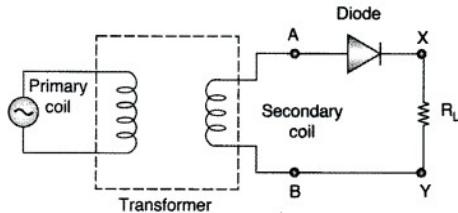
In the positive half cycle of a.c., the voltage at A is positive, the diode is forward biased and it conducts current.

In the negative half cycle of a.c., the voltage at A is negative, the diode is reversed biased and it does not conduct current.

Thus, we get output across R_L during positive half cycles only. The output is unidirectional but varying.

एक अर्ध-तरंग दिष्टकारी के रूप में p-n संधि डायोड की कार्यप्रणाली परिपथ आरेख की सहायता से समझाइए।

दिष्टकारी -दिष्टकारी एक परिपथ है जो प्रत्यावर्ती धारा को दिष्ट धारा में परिवर्तित करता है।



p-n डायोड हाफ वेव रेक्टिफायर (अर्ध तरंग दिष्टकारी) के रूप में -

अर्ध तरंग दिष्टकारी में एक डायोड होता है जैसा कि परिपथ आरेख में दिखाया गया है। ट्रांसफार्मर का द्वितीयक वांछित ऐसी देता है ए और बी बिंदुओं के बीच में -

a.c. के धनात्मक अर्धचक्र में, A पर वोल्टता धनात्मक होती है, डायोड अग्रदिशिक बायस्ड होता है और यह धारा का संचालन

करता है।

ऐसी के ऋणात्मक अर्धचक्र में, A पर वोल्टेज ऋणात्मक होता है, डायोड रिवर्स बायस्ड होता है और यह करंट का संचालन नहीं करता है।

इस प्रकार, हम केवल सकारात्मक आधे चक्रों के दौरान R_L में आउटपुट प्राप्त करते हैं। आउटपुट एकदैशिक है लेकिन परिवर्तित होता रहता है।

9. With the help of a suitable diagram, explain the formation of depletion regions in a p-n junction. How does its width change when the junction is

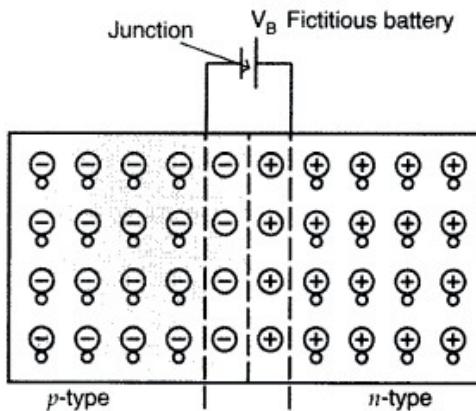
- (i) forward biased, and
- (ii) reverse biased?

Ans- As soon as a p-n junction is formed, the majority charge carriers begin to diffuse from the regions of higher concentration to the regions of lower concentrations. Thus the electrons from the n-region diffuse into the p-region and where they combine with the holes and get neutralized. Similarly, the holes from the p-region diffuse into the n-region where they combine with the electrons and get neutralized. This process is called electron-hole recombination.

The p-region near the junction is left with immobile -ve ions and the n-region near the junction is left with +ve ions as shown in the figure. The small region in the vicinity of the junction which is depleted of free charge carriers and has only immobile ions is called the depletion layer. In the depletion region, a potential difference V_B is created, called potential barrier as it creates an electric field which opposes the further diffusion of electrons and holes.

- (i) In forward bias, the width of the depletion region is

decreased.


- (ii) In reverse bias, the width of the depletion region is increased.

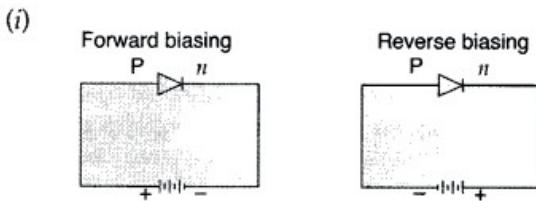
उपयुक्त आरेख की सहायता से p-n सन्धि में अवक्षय क्षेत्रों के बनने की व्याख्या कीजिए। संधि होने पर इसकी चौड़ाई कैसे बदल जाती है।

- (i) अग्रदिशिक बायस में
- (ii) पश्चदिशिक बायस में

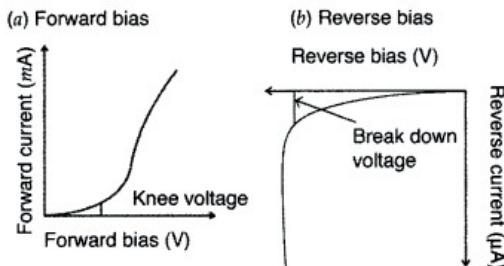
उत्तर-

जैसे ही p-n जंक्शन बनता है, अधिकांश आवेश वाहक उच्च सांदर्भ वाले क्षेत्रों से कम सांदर्भ वाले क्षेत्रों में विसरित होने लगते हैं। इस प्रकार n-क्षेत्र से इलेक्ट्रॉन p-क्षेत्र में विसरित हो जाते हैं और जहाँ वे छिद्रों से संयोजित होकर उदासीन हो जाते हैं। इसी प्रकार, p-क्षेत्र से छिद्र n-क्षेत्र में विसरित होते हैं जहाँ वे इलेक्ट्रॉनों के साथ जुड़ते हैं और उदासीन हो जाते हैं। इस प्रक्रिया को इलेक्ट्रॉन-छिद्र पुनर्संयोजन कहा जाता है।

जंक्शन के पास p-क्षेत्र में स्थिर -ve आयन ही बचते हैं, और जंक्शन के पास n-क्षेत्र में स्थिर +ve आयन ही बचते हैं जैसा कि चित्र में दिखाया गया है। जंक्शन के आसपास के क्षेत्र में छोटा क्षेत्र जिसमें मुक्त आवेश वाहकों की कमी होती है और केवल स्थिर आयन होते हैं, अवक्षय परत या हासी क्षेत्र कहलाता है। अवक्षय परत में, एक विभावांतर V_B बन जाता है, जिसे रोधिका विभव कहा जाता है क्योंकि यह एक विद्युत क्षेत्र है जो इलेक्ट्रॉनों और छिद्रों के आगे प्रसार का विरोध करता है।

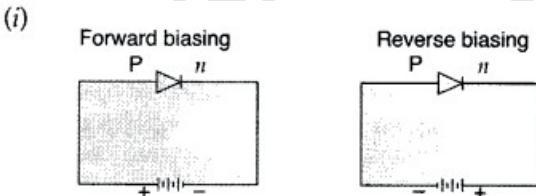

- (i) अग्रदिशिक बायस में अवक्षय क्षेत्र की चौड़ाई कम हो जाती है।
- (ii) पश्चदिशिक बायस में अवक्षय क्षेत्र की चौड़ाई बढ़ जाती है।

10.

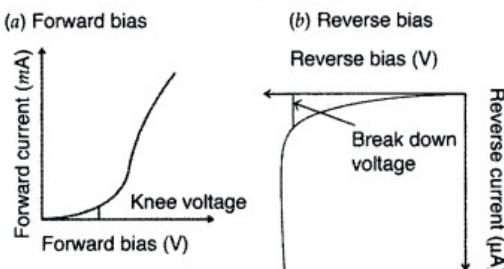

With the help of circuit diagrams, distinguish between forward biasing and reverse biasing of a p-n junction diode.

- (ii) Draw V-I characteristics of a p-n junction diode in
 - (a) forward bias,
 - (b) reverse bias.

Ans-



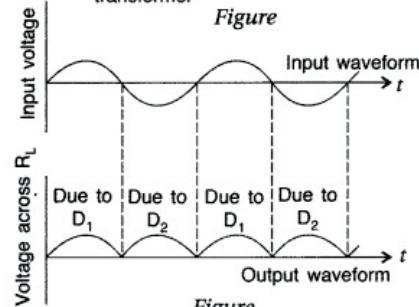
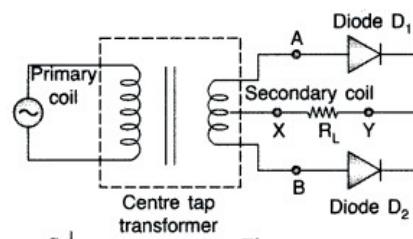
(ii) *V-I characteristics of a p-n junction diode*



10. (i) परिपथ अरेखों की सहायता से किसी p-n संधि डायोड के अग्रदिशिक बायसिंग तथा पश्चदिशिक बायसिंग में विभेद कीजिए।
(ii) p-n संधि डायोड का V-I अभिलाखणिक आरेखित कीजिए
(ए) अग्रदिशिक बायसिंग
(बी) पश्चदिशिक बायसिंग

उत्तर-

(ii) *V-I characteristics of a p-n junction diode*

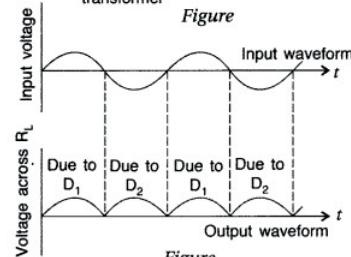
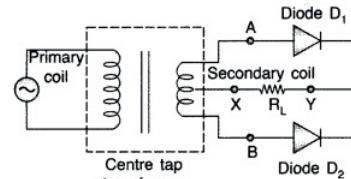
11. Draw a labeled diagram of a full wave rectifier circuit. State its working principle. Show the input-output waveforms.

Ans- p-n junction diode as full wave rectifier

A full wave rectifier consists of two diodes and a special type of transformer known as center tap transformer as shown in the circuit. The secondary of the transformer gives the desired a.c. voltage across A and B.

During the positive half cycle of a.c. input, the diode D_1 is in forward bias and conducts current while D_2 is in reverse biased and does not conduct current. So we get an output voltage across the load resistor R_L .

During the negative half cycle of a.c. input, the diode D_1 is in reverse biased and does not conduct current while diode D_2 is forward biased and conducts current. So we get an output voltage across the load resistor R_L .



पूर्ण तरंग दिष्टकारी परिपथ का नामांकित चित्र बनाइए। इसके कार्य सिद्धांत को बताइए। इनपुट-आउटपुट वेवफार्म दिखाएं।

उत्तर-

पूर्ण तरंग दिष्टकारी के रूप में पी-एन जंक्शन डायोड

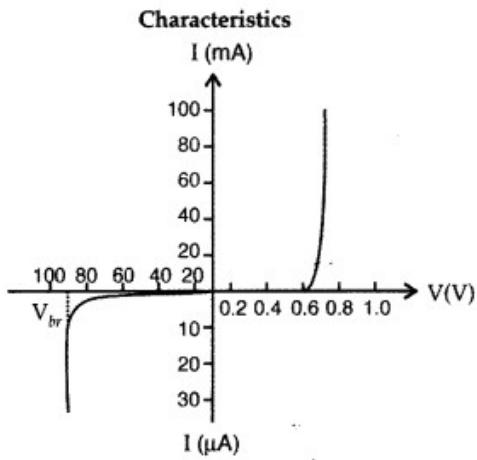
एक फुल वेव रेक्टिफायर में दो डायोड और एक विशेष प्रकार का ट्रांसफॉर्मर होता है जिसे सेंटर टैप ट्रांसफॉर्मर के रूप में जाना जाता है जैसा कि सर्किट में दिखाया गया है। ट्रांसफॉर्मर का द्वितीयक वांछित एसी देता है ए और बी बिंदुओं के बीच में।

एसी के सकारात्मक आधे चक्र के दौरान इनपुट डायोड D_1 अग्र बायस में है और करंट का संचालन करता है जबकि D_2 रिवर्स बायस्ट में है और करंट का संचालन नहीं करता है। तो हमें लोड रेसिस्टर R_L के पार एक आउटपुट वोल्टेज मिलता है।

AC के नकारात्मक आधे चक्र के दौरान इनपुट डायोड D_1 रिवर्स (पश्चदिशिक) बायस्ट में है और करंट का संचालन नहीं करता है जबकि डायोड D_2 फॉरवर्ड (अग्रदिशिक) बायस्ट में है और करंट का संचालन करता है। तो हमें लोड रेसिस्टर R_L के पार एक आउटपुट वोल्टेज मिलता है।

Draw V-I characteristics of a p-n junction diode.

Answer the following questions, giving reasons:


1. Why is the current under reverse bias almost independent of the applied potential upto a critical voltage?

2. Why does the reverse current show a sudden increase at the critical voltage?

Name any semiconductor device which operates under the reverse bias in the breakdown region.

Ans-

1. In reverse bias of p-n junction diodes the small current is due to the minority carrier and hence resistance is also very high. Increase in voltage leads to a very-very small increase in reverse bias currents so we conclude that in reverse bias reverse current is almost independent of applied potential up to a critical voltage because after this critical voltage, current increases suddenly.

2. In reverse bias, reverse current through junction diodes is due to minority charge carriers. As reverse bias voltage is increased, the electric field at the junction becomes significant. When reverse bias voltage becomes equal to zener voltage, electric field strength across the junction becomes high. Electric field across the junction is sufficient to pull valence electrons from the atom on the p- side and accelerate them towards the n-side. The movement of these electrons across the junction account for high current which is observed at breakdown reverse voltage.

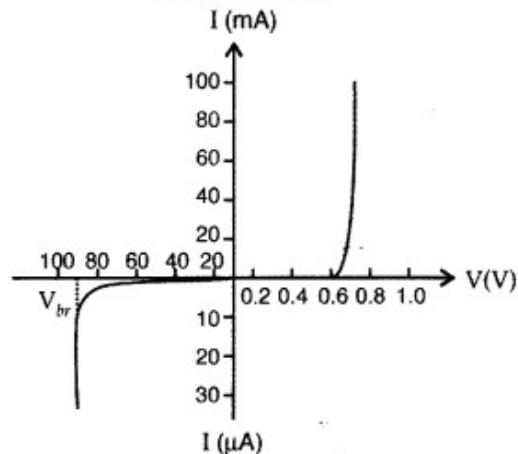
Zener diode and photodiode operate under reverse bias.

12.

p-n सन्धि डायोड का V-I अभिलाखणिक बनाइए।

कारण बताते हुए निम्नलिखित प्रश्नों के उत्तर दीजिए-

1. पश्चिमिक बायस के तहत करंट क्रिटिकल वोल्टेज (क्रांतिक वोल्टेज) तक विभावांतर से लगभग स्वतंत्र क्यों होती है?


2. विपरित धारा क्रांतिक वोल्टता पर अचानक वृद्धि क्यों दर्शाती है?

किसी अर्धचालक युक्ति का नाम लिखिए जो भंजन क्षेत्र में पश्चिमिक बायस के अंतर्गत कार्य करती है।

उत्तर:

1. p-n जंक्शन डायोड के रिवर्स बायस में अल्प धारा अल्पांश वाहक के कारण होती है और इसलिए प्रतिरोध भी बहुत अधिक होता है। वोल्टेज में वृद्धि से रिवर्स बायस धारा भी में बहुत कम वृद्धि होती है, इसलिए हम निष्कर्ष निकालते हैं कि रिवर्स बायस में रिवर्स करंट एक क्रिटिकल वोल्टेज तक विभावांतर से लगभग स्वतंत्र होता है क्योंकि इस क्रिटिकल वोल्टेज के बाद करंट अचानक बढ़ जाता है।

Characteristics

2. पश्चिमिक बायस में जंक्शन डायोड के माध्यम से रिवर्स करंट अल्पसंख्यक आवेश वाहकों के कारण होता है। जैसे ही रिवर्स बायस वोल्टेज बढ़ता है, जंक्शन पर विद्युत क्षेत्र अत्यधिक हो जाता है। जब रिवर्स बायस वोल्टेज जेनर वोल्टेज के बराबर हो जाता है, तो जंक्शन में विद्युत क्षेत्र की ताकत अधिक हो जाती है। जंक्शन के पास विद्युत क्षेत्र परमाणु से पी-साइड पर वैलेंस इलेक्ट्रॉनों को खींचने और उन्हें एन-साइड की ओर बढ़ाने के लिए पर्याप्त है। ब्रेकडाउन रिवर्स वोल्टेज पर इन इलेक्ट्रॉनों की जो गति होती है वो उच्च धारा का कारण बनती है।

जेनर डायोड और फोटो डायोड रिवर्स बायस के तहत काम करते हैं।

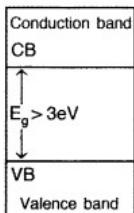
13.

Ans-

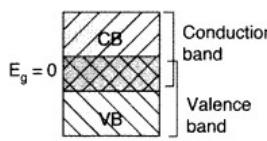
Write distinguishing features between conductors, semiconductors and insulators on the basis of energy band diagrams.

Distinguishing features between conductors, semiconductors and insulators:

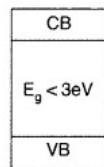
(i) Insulator


In the insulator, the valence band is completely filled. The conduction band is empty and the forbidden energy gap is quite large. So no electron is able to go from valence band to conduction band even if an electric field is applied. Hence electrical conduction is impossible.

(ii) Conductors (Metals)


In metals, either the conduction band is partially filled or the conduction and valence band partly overlap each other. If a small electric field is applied across the metal, the free electrons start moving in a direction opposite to the direction of the electric field. Hence, metal behaves as a conductor.

(iii) Semiconductors


At absolute zero, the conduction band is empty and the valence band is filled. The material is an insulator at low temperature. However the energy gap between valence band and conduction band is small. At room temperature, some valence electrons acquire thermal energy and jump to the conduction band where they can conduct electricity. The holes left behind in the valence band act as a positive charge carrier.

Insulators

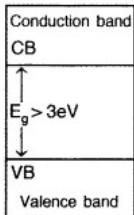
Metals (conductors)

Semiconductors

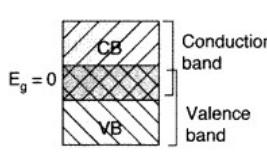
13. **ऊर्जा बैंड आरेखों के आधार पर चालकों, अर्धचालकों तथा विद्युतरोधकों के बीच विशिष्ट विभेद लिखिए।**

उत्तर- कंडक्टर, सेमीकंडक्टर्स और इन्सुलेटर के बीच विशिष्ट विभेद-

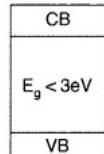
(i) इन्सुलेटर


इन्सुलेटर में वैलेंस बैंड (संयोजी बैंड) पूरी तरह से भरा होता है। चालन बैंड खाली होता है और वर्जित ऊर्जा अंतराल काफी बड़ा होता है। इसलिए कोई भी इलेक्ट्रॉन वैलेंस बैंड से कंडक्शन बैंड (चालन बैंड) तक नहीं जा सकता है, भले ही विद्युत क्षेत्र लगाया जाए। अतः विद्युत चालन असम्भव होता है।

(ii) कंडक्टर (धातु)


धातुओं में, या तो चालन बैंड आंशिक रूप से भरा होता है या चालन और वैलेंस बैंड आंशिक रूप से एक दूसरे को अतिव्याप्त करते हैं। यदि धातु पर एक छोटा विद्युत क्षेत्र लगाया जाता है, तो मुक्त इलेक्ट्रॉन विद्युत क्षेत्र की दिशा के विपरीत दिशा में गति करना शुरू कर देते हैं। अतः धातु चालक की भाँति व्यवहार करती है।

(iii) अर्धचालक


शून्य केल्विन पर, कंडक्शन बैंड खाली होता है और वैलेंस बैंड भरा होता है। अर्धचालक कम तापमान पर एक इन्सुलेटर होता है। हालाँकि वैलेंस बैंड और कंडक्शन बैंड के बीच ऊर्जा का अंतर छोटा होता है। कमरे के तापमान पर, कुछ वैलेंस इलेक्ट्रॉन तापीय ऊर्जा प्राप्त करते हैं और कंडक्शन बैंड में कूद जाते हैं जहां वे विद्युत का संचालन कर सकते हैं। वैलेंस बैंड में पीछे छोड़े गए छिद्र धनात्मक आवेश वाहक के रूप में कार्य करते हैं।

Insulators

Metals (conductors)

Semiconductors

14.

Draw the truth table of a NAND and AND gate.

A,B- Input

X-Output

Truth table of a NAND gate-

A	B	X
0	0	1
0	1	1
1	0	1
1	1	0

Truth table of AND gate-

A	B	X
0	0	0
0	1	0
1	0	0
1	1	1

NAND और AND गेट की सत्यता सारणी बनाइए।

उत्तर- A,B- इनपुट (निवेशी सिग्नल)

X-आउटपुट (निर्गत सिग्नल)

एक NAND गेट की सत्यता सारणी-

A	B	X
0	0	1
0	1	1
1	0	1
1	1	0

एक AND गेट की सत्यता सारणी-

A	B	X
0	0	0
0	1	0
1	0	0
1	1	1