SET 1 – Mechanical Properties of Solids

 The property by which a body regains its original shape after the removal of deforming force is called — (a) Plasticity (b) Elasticity (c) Rigidity (d) Brittleness
2. The ratio of stress to strain is known as — (a) Young's modulus (b) Shear modulus (c) Bulk modulus (d) Modulus of rigidity
3. Stress is defined as — (a) Force per unit area (b) Change in length per unit length (c) Force per unit mass (d) Pressure × volume
4. The SI unit of stress is — (a) N/m² or Pascal (b) N/m (c) J/m³ (d) N·m
5. Strain is — (a) Dimensionless quantity (b) Having the unit of N/m² (c) Having the unit of J/m³ (d) A vector
6. The ratio of change in length to the original length is called —

(a) Longitudinal strain

(b) Shear strain(c) Volume strain(d) Surface strain

7. Hooke's law states that — (a) Stress ∝ Strain (b) Stress ∝ Strain² (c) Strain ∝ 1/Stress (d) Stress = constant 8. The proportional limit is the point — (a) Up to which Hooke's law is valid (b) Where strain becomes maximum (c) Beyond which the body breaks (d) At which stress is maximum 9. Elastic limit is the point — (a) Up to which the body regains its original shape (b) Where permanent deformation starts (c) Where stress = strain (d) At which energy is minimum 10. Permanent deformation occurs when -(a) Elastic limit is crossed (b) Within proportional limit (c) Force is zero (d) Stress is small **11.** The slope of stress–strain curve in elastic region represents — (a) Young's modulus (b) Modulus of rigidity (c) Bulk modulus (d) Poisson's ratio 12. Young's modulus (Y) = (a) Stress / Strain (b) Strain / Stress (c) Force × Area

(d) Stress × Strain

13. The SI unit of Young's modulus is —
(a) N/m²
(b) N/m³
(c) J/m³
(d) Pa ⁻¹
14. Hooke's law fails when —
(a) Stress exceeds elastic limit
(b) Stress = 0
(c) Force is very small
(d) Strain = 0
15. The dimensional formula of stress is —
(a) $[ML^{-1}T^{-2}]$
(b) [MLT ⁻²]
(c) $[M^{-1}L^3T^{-2}]$
(d) $[M^{\circ}L^{\circ}T^{\circ}]$
16. The work done per unit volume in stretching a wire is — (a) ½ × Stress × Strain (b) Stress × Strain (c) Force × Distance (d) Stress / Strain
47. In case of chear strain, there is change in
17. In case of shear strain, there is change in —(a) Shape only
(b) Volume only
(c) Length and volume
(d) Density
(d) Benoity
18. When equal and opposite forces act tangentially to a surface, they produce —(a) Shear stress
(b) Tensile stress
(c) Bulk stress
(d) Longitudinal stress
(a) Longituaniai otroco

(a) (b) (c)	The ratio of lateral strain to longitudinal strain is called — Poisson's ratio Young's modulus Bulk modulus Modulus of rigidity
(a) (b)	1 0.25
(a) (b) (c)	The dimensional formula of modulus of elasticity is — [ML ⁻¹ T ⁻²] [MLT ⁻²] [M ⁻¹ L ³ T ⁻²] [M ⁰ L ⁰ T ⁰]
(a) (b) (c)	The bulk modulus (K) is defined as — Volume stress / Volume strain Stress / Strain Force × Area Stress × Strain
(a) (b)	Bulk modulus is large for — Steel Rubber Water Air
(a) (b) (c)	A substance having large bulk modulus is — Incompressible Compressible Elastic Plastic

25. The SI unit of bulk modulus is —
(a) N/m²
(b) N/m³
(c) m ² /N
(d) J/m ³
26. Shear modulus (G) is the ratio of —
(a) Shear stress to shear strain
(b) Volume stress to volume strain
(c) Tensile stress to tensile strain
(d) Force to volume
(d) i dide to volume
27. For an ideal fluid, shear modulus is —
(a) Zero
(b) Infinity
(c) Finite
(d) Undefined
28. Poisson's ratio has —
(a) No unit
(b) Unit of N/m ²
(c) Unit of J/m³
(d) Dimension of time
(a) 2 mierieren en ame
29. For an incompressible liquid, Poisson's ratio is —
(a) 0.5
(b) 1
(c) 0
(d) ∞
30. The relationship between Y, K, and G is —
(a) $Y = 9KG / (3K + G)$
(b) $Y = 3KG / (3K + G)$
(c) $Y = 2KG / (3K - G)$
(d) Y = K + G

31. The relation between Y, K, and Poisson's ratio (σ) is —
$(a) Y = 3K(1 - 2\sigma)$
$(b) Y = K(1 - \sigma)$
$ (c) Y = 2K(1 + \sigma) $ $ (d) Y = 9K(1 - \sigma) $
$(d) Y = 9K(1 - \sigma)$
32. The stress at which a wire begins to flow is called —
(a) Yield point
(b) Breaking point
(c) Elastic limit
(d) Proportional limit
33. The point at which a wire breaks is known as —
(a) Breaking point
(b) Elastic limit
(c) Yield point
(d) Ultimate limit
34. The slope of stress–strain curve beyond elastic limit — (a) Decreases (b) Increases (c) Remains same (d) Becomes infinite
35. Rubber has —
(a) High strain, low stress
(b) Low strain, high stress
(c) Both high stress and strain
(d) No elasticity
36. Steel is more elastic than rubber because —
(a) Y (Young's modulus) of steel is greater
(b) Y of rubber is small
(c) Both (a) and (b)
(d) None

 37. Elastic potential energy per unit volume = (a) ½ × Stress × Strain (b) Stress × Strain (c) Stress / Strain (d) Force × Strain
38. Which one of the following has the greatest elasticity? (a) Steel (b) Copper (c) Glass (d) Rubber
39. The breaking stress of a wire depends on — (a) Nature of material (b) Area of cross-section (c) Both (a) and (b) (d) Temperature
40. The elastic limit of steel is — (a) High (b) Low (c) Same as rubber (d) Zero
41. In Hooke's law, if stress is doubled, strain — (a) Doubles (b) Halves (c) Remains constant (d) Becomes zero
42. The unit of strain energy per unit volume is — (a) J/m³ (b) N/m² (c) Pa (d) N/m³

 43. Permanent deformation occurs when — (a) Stress exceeds elastic limit (b) Within elastic limit (c) Force = 0 (d) At equilibrium
44. The substance with highest value of Young's modulus is — (a) Steel (b) Copper (c) Lead (d) Aluminium
45. The curve between stress and strain is — (a) Straight line within elastic limit (b) Parabola (c) Circle (d) Hyperbola
46. The point where stress is maximum is — (a) Breaking point (b) Elastic limit (c) Yield point (d) Proportional limit
47. For gases, bulk modulus is — (a) Very small (b) Very large (c) Zero (d) Infinity
48. Rubber is less elastic because — (a) Its Y is small (b) Its strain is large (c) It does not obey Hooke's law (d) All the above

- **49.** Modulus of rigidity (G) is also called —
- (a) Shear modulus
- (b) Bulk modulus
- (c) Young's modulus
- (d) Tangential modulus
- **50.** In Hooke's law, stress and strain are —
- (a) Directly proportional within elastic limit
- (b) Inversely proportional
- (c) Equal
- (d) Independent

Answer Key – SET 1

1 (b) 2 (a) 3 (a) 4 (a) 5 (a) 6 (a) 7 (a) 8 (a) 9 (b) 10 (a) 11 (a) 12 (a) 13 (a) 14 (a) 15 (a) 16 (a) 17 (a) 18 (a) 19 (a) 20 (a) 21 (a) 22 (a) 23 (a) 24 (a) 25 (a) 26 (a) 27 (a) 28 (a) 29 (a) 30 (a) 31 (a) 32 (a) 33 (a) 34 (a) 35 (a) 36 (c) 37 (a) 38 (a) 39 (c) 40 (a) 41 (a) 42 (a) 43 (a) 44 (a) 45 (a) 46 (a) 47 (a) 48 (d) 49 (a) 50 (a)