CLASS XI BIO CH-12

Set 1 – Respiration in Plants

(Factual / Knowledge-Based)
The breakdown of food materials within cells to release energy is called: A) Photosynthesis B) Respiration C) Fermentation D) Digestion
Respiration is essentially a process of: A) Oxidation B) Reduction C) Hydrolysis D) Polymerisation
3. The energy released during respiration is stored as: A) ADP B) ATP C) AMP D) NADH
 4. The full form of ATP is: A) Adenine Triphosphate B) Adenosine Triphosphate C) Adenine Tetraphosphate D) Adenosine Tetraphosphate
5. The first step of respiration occurs in the:A) Mitochondria B) Cytoplasm C) Ribosomes D) Nucleus
6. Glycolysis is also known as: A) EMP pathway B) TCA cycle C) Calvin cycle D) C4 cycle
7. The EMP pathway was first given by:A) Krebs B) Blackman C) Embden, Meyerhof, and Parnas D) Calvin
8. The substrate of glycolysis is: A) Glucose B) Pyruvate C) Acetyl-CoA D) Lactate
9. The end product of glycolysis is: A) CO ₂ B) Pyruvic acid C) Acetyl-CoA D) Ethanol
10. Glycolysis occurs in:A) Cytoplasm B) Mitochondria C) Chloroplast D) Nucleus
11. In glycolysis, one molecule of glucose yields: A) 2 ATP (net) B) 4 ATP (net) C) 2 ATP (gross) D) 6 ATP
12 . The gross gain of ATP in glycolysis is: A) 2 B) 4 C) 6 D) 8
13. The net gain of ATP in glycolysis is: A) 2 B) 4 C) 6 D) 8

14. The first phosphorylated compound in glycolysis is:A) Glucose-6-phosphate B) Fructose-1,6-bisphosphate C) Pyruvate D)3-phosphoglycerate
15. The enzyme that phosphorylates glucose is:A) Hexokinase B) Phosphofructokinase C) Aldolase D) Enolase
16. Under aerobic conditions, pyruvate enters:A) Cytoplasm B) Mitochondria C) Chloroplast D) Nucleus
17. The conversion of pyruvate to acetyl-CoA occurs in:A) Cytosol B) Mitochondrial matrix C) Inner membrane D) Cristae
18. The link between glycolysis and Krebs cycle is: A) Acetyl-CoA B) Pyruvate C) NADH D) FADH ₂
19. The TCA cycle is also known as:A) Calvin cycle B) Krebs cycle C) EMP pathway D) Photorespiration
20. The TCA cycle occurs in: A) Cytoplasm B) Mitochondria C) Nucleus D) ER
21. The first stable product of Krebs cycle is: A) Citrate B) Malate C) Fumarate D) Oxaloacetate
 22. The Krebs cycle starts with the condensation of: A) Pyruvate + O₂ B) Acetyl-CoA + Oxaloacetate C) Glucose + ATP D) Malate + NADH
23. The number of CO₂ molecules released per glucose in TCA cycle is: A) 1 B) 2 C) 4 D) 6
24. Each NADH molecule yields how many ATPs during ETS? A) 1 B) 2 C) 3 D) 4
25. Each FADH ₂ molecule yields how many ATPs during ETS? A) 1 B) 2 C) 3 D) 4
26. The ETS (Electron Transport System) is located in:A) Cytoplasm B) Mitochondrial inner membrane C) Outer membrane D) Ribosome
27. The last electron acceptor in aerobic respiration is: A) CO ₂ B) O ₂ C) NAD ⁺ D) FAD
28. The end product of aerobic respiration is: A) Ethanol B) Lactic acid C) CO ₂ and H ₂ O D) Acetaldehyde
29. The site of oxidative phosphorylation is:A) Cytoplasm B) Inner mitochondrial membrane C) Outer mitochondrial membrane D)Ribosome

30. The enzyme ATP synthase is located in:A) Mitochondrial matrix B) Inner membrane C) Outer membrane D) Intermembrane space
31. Fermentation is a type of:A) Aerobic respiration B) Anaerobic respiration C) Photosynthesis D) Oxidation
 32. Alcoholic fermentation produces: A) CO₂ + Lactic acid B) CO₂ + Ethanol C) CO₂ + Acetate D) Acetone
33. Lactic acid fermentation occurs in: A) Yeast B) Muscles C) Plants D) Mitochondria
34. How many ATP are generated during fermentation? A) 1 B) 2 C) 3 D) 4
35. Respiratory quotient (RQ) = A) CO_2 evolved / O_2 consumed B) O_2 consumed / CO_2 evolved C) $CO_2 + O_2$ D) $CO_2 \times O_2$
36. The RQ of carbohydrate is: A) 0.7 B) 1.0 C) 0.9 D) 0.5
37. The RQ of fat is: A) 1.0 B) 0.7 C) 0.9 D) 1.2
38. The RQ of protein is approximately: A) 0.5 B) 0.7 C) 0.9 D) 1.2
39. The RQ of organic acids is: A) >1 B) <1 C) 1 D) 0
40. The total number of ATP molecules produced per glucose during aerobic respiration is: A) 30 B) 36 C) 38 D) 40
41. The number of ATP used in glycolysis per glucose molecule is: A) 1 B) 2 C) 3 D) 4
42. The number of ATP molecules formed per pyruvate during TCA cycle: A) 12 B) 15 C) 18 D) 24
43. In plants, anaerobic respiration occurs in:A) Roots in waterlogged soils B) Leaves C) Flowers D) Seeds only
44. During fermentation, the electron acceptor is: A) O ₂ B) NAD ⁺ C) CO ₂ D) FAD
45. The Krebs cycle operates only under:A) Aerobic conditions B) Anaerobic conditions C) Both D) None

- **46.** Number of NADH produced during one turn of Krebs cycle:
- A) 1 B) 2 C) 3 D) 4
- **47.** Number of FADH₂ produced during one turn of Krebs cycle:
- A) 1 B) 2 C) 3 D) 4
- 48. Number of substrate-level phosphorylations in Krebs cycle:
- A) 1 B) 2 C) 3 D) 4
- **49.** The term "Tricarboxylic acid cycle" was coined by:
- A) Krebs B) Meyerhof C) Hill D) Calvin
- **50.** The main purpose of respiration is to:
- A) Produce oxygen B) Produce energy (ATP) C) Produce carbon D) Produce glucose

Answer Key (Set 1)

1-B, 2-A, 3-B, 4-B, 5-B, 6-A, 7-C, 8-A, 9-B, 10-A, 11-A, 12-B, 13-A, 14-A, 15-A, 16-B, 17-B, 18-A, 19-B, 20-B, 21-A, 22-B, 23-C, 24-C, 25-B, 26-B, 27-B, 28-C, 29-B, 30-B, 31-B, 32-B, 33-B, 34-B, 35-A, 36-B, 37-B, 38-C, 39-A, 40-C, 41-B, 42-A, 43-A, 44-B, 45-A, 46-C, 47-A, 48-A, 49-A, 50-B.