SETS

Set 3:

- 1. The union of two sets A and B is denoted by:
- a) A ∩ B
- b) A U B
- c) A B
- d) A × B
- 2. The union of sets A and B contains:
- a) Only elements common to both A and B
- b) All elements that are in A but not in B
- c) All elements that are in A or in B (or in both)
- d) All elements that are not in A
- 3. If A = $\{1, 2, 3\}$ and B = $\{3, 4, 5\}$, then A \cup B is:
- a) {3}
- b) {1, 2, 3, 4, 5}
- c) {1, 2, 4, 5}
- d) {1, 2}
- 4. The intersection of two sets A and B is denoted by:
- a) A ∩ B
- b) A ∪ B
- c) A B
- d) A'
- 5. The intersection of sets A and B contains:
- a) Only elements common to both A and B
- b) All elements that are in A or in B
- c) All elements that are in A but not in B
- d) All elements that are not in B
- 6. If A = $\{1, 2, 3\}$ and B = $\{3, 4, 5\}$, then A \cap B is:
- a) {3}
- b) {1, 2, 3, 4, 5}
- c) {1, 2, 4, 5}
- d) {1, 2}
- 7. If $A \subset B$, then $A \cup B$ is equal to:
- a) A

- b) B c) φ
- d) $A \cap B$
- 8. If $A \subset B$, then $A \cap B$ is equal to:
- a) A
- b) B
- c) φ
- d) A U B
- 9. The difference of two sets A and B (A B) contains:
- a) Elements in both A and B
- b) Elements in A or in B
- c) Elements in A but not in B
- d) Elements not in A
- 10. If $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$, then A B is:
- a) {1, 2}
- b) {5, 6}
- c) {3, 4}
- d) {1, 2, 5, 6}
- 11. For the sets in Q10, B A is:
- a) {1, 2}
- b) {5, 6}
- c) $\{3, 4\}$
- d) {1, 2, 5, 6}
- 12. Two sets A and B are said to be disjoint if:
- a) $A \subset B$
- b) B \subset A
- c) $A \cap B = \phi$
- $d) A \cup B = U$
- 13. Which of the following pairs of sets are disjoint?
- a) $A = \{1, 2, 3\}, B = \{4, 5, 6\}$
- b) $A = \{1, 2, 3\}, B = \{3, 4, 5\}$
- c) $A = \{a, b, c\}, B = \{b, c, d\}$
- d) $A = \{x : x \text{ is even}\}, B = \{x : x \text{ is a multiple of 2}\}$
- 14. The shaded region in the Venn diagram below represents:

(Imagine a Venn diagram with two overlapping circles A and B. The only region shaded is the part of A that does not overlap with B)

- a) A ∪ B
- b) A ∩ B
- c) A B
- d) B A

 15. Which law is represented by A ∪ B = B ∪ A? a) Associative Law b) Distributive Law c) Commutative Law d) De Morgan's Law 	
 16. (A ∪ B) ∪ C = A ∪ (B ∪ C) represents the: a) Associative Law b) Distributive Law c) Commutative Law d) Identity Law 	
17. A ∪ φ is equal to: a) A b) φ c) U d) A'	
18. A ∩ φ is equal to: a) A b) φ c) U d) A'	
19. The distributive law states that: a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ c) Both a and b d) Neither a nor b	
20. If A and B are disjoint sets, then $n(A \cup B)$ is equal to a) $n(A) + n(B) - n(A \cap B)$ b) $n(A) + n(B)$ c) $n(A) - n(B)$ d) $n(A) * n(B)$:
21. For any set A, A ∪ A is equal to: a) A b) A' c) U d) Ø	
22. For any set A, A ∩ A is equal to: a) A b) A' c) U	

d) ∅
23. If A and B are two sets, then A \cap (A \cup B) is equal to: a) A b) B c) A \cup B d) A \cap B
24. The sets A and B are disjoint if: a) A \cup B = \varnothing b) A \cap B = \varnothing c) A - B = \varnothing d) B - A = \varnothing
25. If $n(A) = 10$, $n(B) = 15$, and $n(A \cap B) = 5$, then $n(A \cup B)$ is: a) 20 b) 25 c) 30 d) 15
26. If A ⊂ B, then A ∩ B is: a) A b) B c) Ø d) A ∪ B
27. The symmetric difference of A and B is given by: a) $(A - B) \cap (B - A)$ b) $(A - B) \cup (B - A)$ c) $(A \cup B) - (A \cap B)$ d) Both b and c
28. If A = {1, 2, 3} and B = {3, 4}, then A × B contains: a) 5 elements b) 6 elements c) 3 elements d) 4 elements
29. The distributive law of intersection over union is: a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ c) Both a and b d) Neither a nor b
30. If U = $\{1,2,3,4,5\}$, A = $\{1,2,3\}$, B = $\{3,4\}$, then (A - B)' is: a) $\{3,4,5\}$ b) $\{1,2,5\}$

c) {4,5} d) {3}
31. The set (A ∪ B) ∩ (A ∪ B') is equal to: a) A b) B c) A ∩ B d) A ∪ B
32. If A and B are disjoint, then $n(A \cup B)$ is equal to: a) $n(A) + n(B)$ b) $n(A) + n(B) - n(A \cap B)$ c) $n(A) * n(B)$ d) $n(A) - n(B)$
33. The shaded region in the Venn diagram represents: (Imagine two overlapping circles A and B. The overlapping region is shaded) a) A \cup B b) A \cap B c) A - B d) B - A
34. For any two sets A and B, A - B is a subset of: a) B b) A c) A' d) B'
35. If A = {a, b, c} and B = {c, d, e}, then (A \cup B) - (A \cap B) is: a) {a, b, d, e} b) {c} c} c) {a, b, c, d, e} d) \varnothing
36. The law A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) is the: a) Commutative law b) Associative law c) Distributive law d) De Morgan's law
 37. If A ∩ B = Ø, then A and B are called: a) Overlapping sets b) Disjoint sets c) Equal sets d) Equivalent sets
38. The set A - (A ∩ B) is equal to:

a) A ∩ B b) A ∪ B c) A - B d) B - A	
39. If A = $\{x : x \text{ is a multiple of 3}\}$ and B = $\{x : x \text{ is a multiple of 5}\}$, then A \cap B is the set of multiples of: a) 3 b) 5 c) 8 d) 15	
40. The number of elements in the Cartesian product of two sets with m and n elements respectively is: a) m + n b) m * n c) m^n d) n^m	
41. The identity law for union states that A ∪ Ø is equal to: a) Ø b) A c) U d) A'	
 42. The identity law for intersection states that A ∩ U is equal to: a) Ø b) A c) U d) A' 	
43. If A and B are two sets such that $n(A) = 8$, $n(B) = 10$, and $n(A \cup B) = 15$, then $n(A \cap B)$ is: a) 3 b) 4 c) 5 d) 2	
 44. The set (A ∪ B) - (A ∩ B) is called the: a) Union of A and B b) Intersection of A and B c) Symmetric difference of A and B d) Difference of A and B 	
45. If A = {1, 2, 3} and B = {2, 3, 4}, then A \triangle B (symmetric difference) is: a) {1, 4} b) {2, 3} c) {1, 2, 3, 4}	

- 46. The complement of the union of two sets is equal to the intersection of their complements. This is:
- a) Associative law
- b) Commutative law
- c) De Morgan's law
- d) Distributive law
- 47. If $A \subseteq B$, then which of the following is true?
- a) $A \cup B = A$
- b) $A \cap B = B$
- c) A B = ∅
- d) B A = ∅
- 48. The set $A \cap (B \cup C)$ is equal to:
- a) (A ∩ B) ∪ C
- b) (A ∪ B) ∩ C
- c) $(A \cap B) \cup (A \cap C)$
- d) (A \cup B) \cap (A \cup C)
- 49. If A and B are two sets, then $A \times B = B \times A$ if:
- a) A ⊆ B
- b) $B \subseteq A$
- c) A = B
- d) $A = \emptyset$ or $B = \emptyset$ or A = B
- 50. The number of elements in A × B if A has 3 elements and B has 4 elements is:
- a) 7
- b) 12
- c) 4
- d) 3

Set 3:

- 1. b) A ∪ B
- 2. c) All elements that are in A or in B (or in both)
- 3. b) {1, 2, 3, 4, 5}
- 4. a) A ∩ B
- a) Only elements common to both A and B
- 6. a) {3}
- 7. b) B
- 8. a) A
- 9. c) Elements in A but not in B
- 10.a) {1, 2}

- 11.b) {5, 6}
- 12.c) A ∩ B = φ
- 13.a) A = {1, 2, 3}, B = {4, 5, 6}
- 14. c) A B
- 15.c) Commutative Law
- 16.a) Associative Law
- 17.a) A
- 18.b) φ
- 19.c) Both a and b
- 20.b) n(A) + n(B)
- 21.a) A
- 22.a) A
- 23. a) A
- 24.b) A ∩ B = ∅
- 25. a) 20
- 26. a) A
- 27.d) Both b and c
- 28.b) 6 elements
- 29.a) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
- 30.a) {3,4,5}
- 31.a) A
- 32. a) n(A) + n(B)
- 33.b) A ∩ B
- 34.b) A
- 35. a) {a, b, d, e}
- 36.c) Distributive law
- 37.b) Disjoint sets
- 38.c) A B
- 39. d) 15
- 40.b) m * n
- 41.b) A
- 42.b) A
- 43.a)3
- 44. c) Symmetric difference of A and B
- 45.a) {1, 4}
- 46.c) De Morgan's law
- 47.c) A B = ∅
- 48.c) (A ∩ B) ∪ (A ∩ C)
- 49.c) A = B
- 50.b) 12