SET 4 -

- 1. Gibbs free energy (G) is defined as
 - a) G = H TS
 - b) G = H + TS
 - c) G = U PV
 - d) G = H PV
- 2. The SI unit of Gibbs free energy is
 - a) Joule
 - b) J mol⁻¹
 - c) kJ mol⁻¹
 - d) Both (b) and (c)
- 3. Gibbs free energy change (ΔG) is given by
 - a) $\Delta G = \Delta H T\Delta S$
 - b) $\Delta G = \Delta H + T\Delta S$
 - c) $\Delta G = T\Delta H \Delta S$
 - d) $\Delta G = \Delta H / \Delta S$
- 4. For a spontaneous reaction, ΔG is
 - a) Negative
 - b) Positive
 - c) Zero
 - d) Constant
- 5. For a non-spontaneous reaction, ΔG is
 - a) Negative
 - b) Positive
 - c) Zero
 - d) Infinite
- 6. For a reversible reaction at equilibrium, $\Delta G =$
 - a) Positive
 - b) Negative
 - c) Zero
 - d) Constant
- 7. When ΔH is negative and ΔS is positive, ΔG will be
 - a) Always negative
 - b) Always positive
 - c) Zero
 - d) Variable
- 8. When ΔH is positive and ΔS is negative, ΔG will be
 - a) Always negative

- b) Always positive
- c) Zero
- d) Temperature dependent
- 9. If both ΔH and ΔS are positive, the reaction is spontaneous at
 - a) High temperature
 - b) Low temperature
 - c) Zero temperature
 - d) Never spontaneous
- 10. If both ΔH and ΔS are negative, the reaction is spontaneous at
 - a) High temperature
 - b) Low temperature
 - c) All temperatures
 - d) Never spontaneous
- 11. If $\Delta G < 0$, the reaction
 - a) Is spontaneous
 - b) Is non-spontaneous
 - c) Is at equilibrium
 - d) Stops
- 12. If $\Delta G > 0$, the reaction
 - a) Is spontaneous
 - b) Is non-spontaneous
 - c) Is equilibrium
 - d) Is reversible
- 13. If $\Delta G = 0$, the reaction
 - a) Is at equilibrium
 - b) Is spontaneous
 - c) Is non-spontaneous
 - d) Absorbs energy
- 14. The relationship between ΔG° and equilibrium constant K is
 - a) $\Delta G^{\circ} = -RT \ln K$
 - b) $\Delta G^{\circ} = RT lnK$
 - c) $\Delta G^{\circ} = K \ln R$
 - d) $\Delta G^{\circ} = -KRT$
- 15. When K > 1, ΔG° is
 - a) Positive
 - b) Negative
 - c) Zero
 - d) Undefined

- 16. When K < 1, ΔG° is a) Positive b) Negative c) Zero d) Infinite
 - 17. When K = 1, ΔG° is
 - a) Zero
 - b) Positive
 - c) Negative
 - d) Constant
 - 18. A reaction at equilibrium has
 - a) $\Delta G = 0$
 - b) $\Delta G^{\circ} = 0$
 - c) $\Delta H = 0$
 - d) $\Delta S = 0$
 - 19. For spontaneous reaction at constant temperature and pressure
 - a) $\Delta G < 0$
 - b) $\Delta H < 0$
 - c) $\Delta S < 0$
 - d) All of these
 - 20. Gibbs free energy combines
 - a) Enthalpy and entropy
 - b) Internal energy and pressure
 - c) Volume and entropy
 - d) Temperature and enthalpy
 - 21. If $\Delta G = \Delta H T\Delta S$, then for $\Delta G = 0$,
 - a) $\Delta H = T\Delta S$
 - b) $\Delta H = -T\Delta S$
 - c) $\Delta S = 0$
 - d) $\Delta H = 0$
 - 22. When $\Delta H = 0$ and $\Delta S > 0$, reaction is
 - a) Always spontaneous
 - b) Never spontaneous
 - c) At equilibrium
 - d) None
 - 23. When $\Delta S = 0$ and $\Delta H < 0$, reaction is
 - a) Always spontaneous
 - b) Never spontaneous
 - c) At equilibrium

d) Endothermic
24. Gibbs free energy change determines – a) Spontaneity b) Rate c) Mechanism d) Energy only
25. ΔG° for a reversible cell reaction equals – a) –nFE°cell b) +nFE°cell c) 0 d) RT lnK
26. ΔG° = -nFE°cell relates – a) Gibbs energy and cell potential b) Work and pressure c) Entropy and enthalpy d) None
27. For a galvanic cell, spontaneous reaction occurs when – a) E°cell > 0 b) E°cell < 0 c) E°cell = 0 d) E°cell undefined
28. In an electrolytic cell, reaction is – a) Non-spontaneous b) Spontaneous c) Equilibrium d) None
 29. In a galvanic cell, chemical energy is converted to – a) Electrical energy b) Light energy c) Sound energy d) Heat energy
 30. In an electrolytic cell, electrical energy is converted to – a) Chemical energy b) Mechanical energy c) Thermal energy d) None
31. The quantity of electricity required to deposit one mole of a univalent ion is – a) 96500 C b) 1 C

	c) 1000 C
	d) 6.022 × 10 ²³ C
	,
32.	One faraday is equal to –
	a) 96500 C mol ⁻¹
	b) 1 C mol ⁻¹
	c) 96500 J mol ⁻¹
	d) 1 J mol ⁻¹
33.	The amount of substance deposited in electrolysis is proportional to – a) Quantity of electricity passed b) Current strength
	c) Time
	d) All of these
34	Relation between ΔG and equilibrium constant K at any temperature is
O 1.	a) $\Delta G = \Delta G^{\circ} + RT \ln Q$
	b) ΔG = RT InK
	c) ΔG° = RT InK
	d) $\Delta G = -RT \ln K$
	u) 46KT IIIK
35.	If ΔG° = –RT lnK, then K =
	a) e^(–ΔG°/RT)
	b) e^(ΔG°/RT)
	c) RT/ΔG°
	d) None
36.	If ΔG° < 0, then K is –
	a) > 1
	b) < 1
	c) = 1
	d) 0
37	If $\Delta G^{\circ} > 0$, then K is –
J1.	a) > 1
	b) < 1
	c) = 1
	d) 0
	u) 0
38.	For a cell reaction at equilibrium,
	a) $\Delta G = 0$
	b) Ecell = 0
	c) K = Q

39. The term "reversible process" means –

a) Occurs infinitesimally slowly

d) All of these

- b) Can be reversed by infinitesimal change
- c) Is in equilibrium throughout
- d) All of these
- 40. A spontaneous process occurs
 - a) Without any external influence
 - b) With external work
 - c) At constant volume
 - d) Only in solids
- 41. The spontaneity of a process depends on
 - a) Enthalpy and entropy
 - b) Pressure and volume
 - c) Work and heat
 - d) None
- 42. Which combination is always spontaneous?
 - a) ΔH negative, ΔS positive
 - b) ΔH positive, ΔS negative
 - c) Both positive
 - d) Both negative
- 43. For ice melting at 0°C, ΔH and ΔS are
 - a) Both positive
 - b) Both negative
 - c) ΔH negative, ΔS positive
 - d) ΔH positive, ΔS negative
- 44. For freezing of water, ΔH and ΔS are
 - a) Both negative
 - b) Both positive
 - c) ΔH positive, ΔS negative
 - d) ΔH negative, ΔS positive
- 45. A spontaneous process is one that
 - a) Proceeds without external help
 - b) Requires external help
 - c) Is reversible
 - d) Is exothermic only
- 46. At 0 K, the entropy of a perfect crystal is
 - a) Zero
 - b) Infinite
 - c) Positive
 - d) Negative

- 47. The process $H_2O(I) \rightarrow H_2O(g)$ is
 - a) Endothermic and entropy increases
 - b) Exothermic and entropy decreases
 - c) Exothermic and entropy increases
 - d) Endothermic and entropy decreases
- 48. ΔG gives the measure of
 - a) Maximum useful work
 - b) Minimum work
 - c) Heat absorbed
 - d) Random motion
- 49. The process with $\Delta G = 0$ represents
 - a) Reversible equilibrium
 - b) Non-spontaneous
 - c) Spontaneous
 - d) Isothermal
- 50. The thermodynamic criterion for equilibrium is
 - a) $\Delta G = 0$
 - b) $\Delta S = 0$
 - c) $\Delta H = 0$
 - d) $\Delta E = 0$

MANSWER KEY – SET 4

1-a 2-d 3-a 4-a 5-b 6-c 7-a 8-b 9-a 10-b 11-a 12-b 13-a 14-a 15-b 16-a 17-a 18-a 19-a 20-a 21-a 22-a 23-a 24-a 25-a 26-a 27-a 28-a 29-a 30-a 31-a 32-a 33-d 34-a 35-a 36-a 37-b 38-d 39-d 40-a 41-a 42-a 43-a 44-a 45-a 46-a 47-a 48-a 49-a 50-a