1. Which of the following is a redox reaction?

c) $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$ d) $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$

a) NaOH + HCl → NaCl + H₂O

b) $2Mg + O_2 \rightarrow 2MgO$

a) Zn b) Cu c) Zn²⁺ d) Cu²⁺

SET 2 – Types and Balancing of Redox Reactions

2. In the reaction Zn + $Cu^{2+} \rightarrow Zn^{2+} + Cu$, which element is oxidised?

3.	In the above reaction, which species is reduced? a) Cu²+ b) Zn²+ c) Zn d) Cu
4.	In the reaction Fe + CuSO₄ → FeSO₄ + Cu, Fe acts as – a) Oxidising agent b) Reducing agent c) Catalyst d) Solvent
5.	Reaction between Mg and HCl is – a) Combination b) Decomposition c) Displacement d) Double displacement
6.	In redox reactions, electrons are transferred from – a) Oxidising agent to reducing agent b) Reducing agent to oxidising agent c) Both ways d) None
7.	Oxidation number of Fe in Fe ₂ O ₃ is – a) +1 b) +2 c) +3 d) +4
8.	Oxidation number of nitrogen in NO ₃ ⁻ is – a) +2 b) +3 c) +4 d) +5
9.	In reaction H_2 + $Cl_2 \rightarrow 2HCl$, what happens to chlorine? a) Oxidised

b) Reduced c) Both d) None
 10. In H₂O₂ → H₂O + O₂, the reaction is an example of – a) Combination b) Displacement c) Disproportionation d) Neutralisation
 11. In a disproportionation reaction – a) One element is oxidised and reduced simultaneously b) Two elements are oxidised c) Two elements are reduced d) None
12. Example of disproportionation reaction – a) $2H_2O_2 \rightarrow 2H_2O + O_2$ b) $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$ c) $H_2 + Cl_2 \rightarrow 2HCl$ d) NaOH + HCl \rightarrow NaCl + H_2O
13. In Na ₂ S ₂ O ₃ , oxidation number of sulphur is – a) +2 b) +2.5 c) +3 d) +4
14. In KMnO₄, oxidation number of Mn is – a) +2 b) +4 c) +6 d) +7
15. In acidic medium, MnO₄⁻ changes to – a) MnO₂ b) Mn²⁺ c) Mn³⁺ d) Mn⁺
16. Oxidation state of Cr in K ₂ Cr ₂ O ₇ is – a) +2 b) +3 c) +6 d) +7
17. Oxidation number of Fe in Fe ₃ O ₄ is – a) +2 b) +2.67 c) +3 d) +4
18. A reducing agent –

a) Gets oxidised

b) Gets reducedc) Loses hydrogend) Both a and c
19. Oxidising agent – a) Is oxidised b) Is reduced c) Loses electrons d) None
 20. Which reaction is not a redox reaction? a) Decomposition of KClO₃ b) Neutralisation reaction c) Combination of H₂ and Cl₂ d) Reaction between Zn and Cu²⁺
21. The oxidation number of oxygen in peroxides is – a) –2 b) –1 c) 0 d) +1
22. Oxidation number of oxygen in superoxides is – a) –2 b) –1 c) –½ d) 0
23. Oxidation number of hydrogen in metal hydrides is – a) +1 b) 0 c) -1 d) +2
24. Oxidation number of nitrogen in N₂H₄ is – a) 0 b) −1 c) −2 d) −3
25. Oxidation number of chlorine in Cl ₂ O ₇ is – a) +1 b) +3 c) +5 d) +7
26. Which rule is applied to find oxidation number?a) Charge balance ruleb) Electroneutrality rulec) Hydrogen ruled) All of these
27. In redox reactions, the species losing electrons is called – a) Oxidised

b) Reduced c) Oxidising agent d) None
 28. In balancing redox reactions, the total electrons lost equals – a) Total electrons gained b) Double of electrons gained c) Half of electrons gained d) None
 29. In basic medium, redox equations are balanced using – a) H⁺ and H₂O b) OH⁻ and H₂O c) H₂O only d) None
30. In acidic medium, redox equations are balanced using – a) OH^- b) H^+ c) H_2O d) Both b and c
31. In acidic medium, the half-reaction for reduction of MnO_4^- is – a) $MnO_4^- \rightarrow Mn^{2^+}$ b) $MnO_4^- \rightarrow MnO_2$ c) $MnO_4^- \rightarrow Mn^{3^+}$ d) None
32. Number of electrons gained in above reduction is – a) 1 b) 2 c) 3 d) 5
 33. In oxidation half-reaction, electrons appear – a) On right-hand side b) On left-hand side c) Both sides d) None
 34. In reduction half-reaction, electrons appear – a) On right-hand side b) On left-hand side c) Both d) None
 35. Oxidation state of CI changes from 0 to +1 in – a) Cl₂ + H₂O → HCI + HOCI b) Cl₂ + 2NaOH (hot) → NaCI + NaCIO₃ + H₂O c) Cl₂ + 2NaOH (cold) → NaCI + NaOCI + H₂O d) None
36. In redox reaction, total increase in oxidation number = total –

a) Decrease in oxidation number

b) Number of atoms

c) Moles of electrons d) None
Γhe oxidation number of carbon in HCHO is a) 0 b) +2 c) +4 d) –2
n CH₃OH, oxidation number of carbon is – a) +2 b) –2 c) +4 d) –4
n CO ₂ , oxidation number of carbon is – a) +2 b) +4 c) 0 d) –2
When Cl₂ + H₂S → 2HCl + S, oxidising agent is – a) Cl₂ b) H₂S c) S d) HCl
n the same reaction, reducing agent is – a) Cl ₂ b) H ₂ S c) HCl d) S
n acidic medium, $Cr_2O_7^{2-} \rightarrow Cr^{3+}$ involves – a) Gain of 6 electrons b) Loss of 6 electrons c) Gain of 3 electrons d) None
Oxidation number of N in NO ₃ is – a) +3 b) +4 c) +5 d) +6
Oxidation number of S in H ₂ SO ₃ is – a) +2 b) +4 c) +6 d) +8

- 45. Oxidation number of S in H₂S₂O₈ (peroxodisulphuric acid) is
 - a) +4
 - b) +6
 - c) +7
 - d) +8
- 46. Example of oxidation reaction
 - a) Addition of oxygen
 - b) Removal of hydrogen
 - c) Loss of electrons
 - d) All of these
- 47. Example of reduction reaction
 - a) Addition of hydrogen
 - b) Gain of electrons
 - c) Loss of oxygen
 - d) All of these
- 48. The equivalent weight of oxidising agent is
 - a) Moles of oxidised substance / electrons lost
 - b) Molar mass / number of electrons gained
 - c) Molar mass × electrons gained
 - d) None
- 49. The sum of oxidation numbers of all atoms in a neutral compound is
 - a) 0
 - b) 1
 - c) -1
 - d) +1
- 50. The sum of oxidation numbers of all atoms in an ion is
 - a) Equal to the charge on ion
 - b) Always zero
 - c) Always one
 - d) Always negative

Answers – SET 2

```
1-b 2-a 3-a 4-b 5-c 6-b 7-c 8-d 9-b 10-c
11-a 12-a 13-b 14-d 15-b 16-c 17-b 18-d 19-b 20-b
21-b 22-c 23-c 24-c 25-d 26-d 27-a 28-a 29-b 30-d
31-a 32-d 33-a 34-b 35-a 36-a 37-b 38-b 39-b 40-a
41-b 42-a 43-c 44-b 45-b 46-d 47-d 48-b 49-a 50-a
```