SET 3 – System of Particles and Rotational Motion

1. The position of the centre of m	acc of a system of particles depends on:
(a) distribution of mass	ass of a system of particles depends on:
(b) shape of the system	
(c) external force	
(d) size of particles	
(d) Size of particles	
2. The torque is defined as:	
(a) r × F	
(b) F × r	
(c) F/r	
(d) F · r	
(0) 1	
3. The moment of inertia of a hoo	ly is smallest when the axis passes through:
(a) centre of gravity	y is smallest when the axis passes through.
(b) edge	
(c) tangent	
(d) corner	
4. The moment of inertia of a unit	form rod of length L about its end is:
(a) ML ² /3	
(b) ML ² /12	
(c) ML ² /2	
(d) ML ²	
(d) IVIZ	
5. The perpendicular axis theorer	m is applicable to:
(a) plane lamina	по аррисаме ю.
(b) solid sphere	
(c) rigid body	
(d) cube	
(u) cube	
6. The unit of angular momentum	is same as that of:

(a) energy × time(b) torque × time

(c) force × distance (d) work	
7. Rotational kinetic energy is given by:	
(a) $\frac{1}{2}$ I ω^2	
(b) $I\omega^2$	
(c) ½ lω	
(d) I/ω^2	
8. The angular velocity of a rotating body changes when:	
(a) torque acts	
(b) inertia changes	
(c) radius changes	
(d) both (a) and (b)	
9. The condition for equilibrium of a rigid body is: (a) net force = 0 (b) net torque = 0 (c) both (a) and (b) (d) either (a) or (b)	
10. The point where total mass of a system may be considered concentrated is called (a) centre of gravity	d:
(b) centroid	
(c) centre of mass	
(d) equilibrium point	
11. The torque acting on a particle due to force F is zero when:	
(a) r and F are parallel	
(b) r and F are perpendicular(c) r = 0	
(d) both (a) and (c)	
(a) bour (a) and (b)	
12. Moment of inertia of a disc about a diameter =	
(a) ½ MR²	

(b) 1/4 MR²

(c) ² / ₃ MR ² (d) ³ / ₄ MR ²	
13. For a rolling body, total kinetic energy =	
(a) translational + rotational	
(b) rotational - translational	
(c) translational only	
(d) rotational only	
14. The relation between linear velocity v and a	ngular velocity ω is:
(a) $v = \omega R$	
(b) $v = \omega/R$	
(c) $v = R/\omega$	
(d) $\omega = vR$	
15. The moment of inertia of a ring about a diam	neter =
(a) ½ MR ²	icici
(b) MR ²	
(c) ² / ₃ MR ²	
(d) 2/5 MR ²	
16. The radius of gyration (k) is related to mome	ant of inertia (I) and mass (M) as:
(a) $I = Mk^2$	ent of inertia (i) and mass (iii) as.
(b) $I = M/k^2$	
(c) I = k/M	
$(d) k = IM^2$	
47. The retational angles of Neuton's accord to	io.
17. The rotational analog of Newton's second la (a) $\tau = I\alpha$	w is.
(a) $\tau = i\alpha$ (b) $\tau = i\omega$	
(c) $\tau = I\omega$	
$(d) \tau = m\alpha$	
18. If angular acceleration is zero, torque will be	:
(a) zero	

(b) infinite

 19. The unit of angular acceleration is: (a) rad/s² (b) m/s² (c) rad/s (d) s/rad 20. The moment of inertia of a solid sphere about its diameter is: (a) 2/5 MR² (b) ½ MR² (c) ¾ MR² (d) 3/5 MR² 21. The angular momentum of a body rotating with angular velocity ω is: (a) Iω (b) Iα (c) Fω (d) mω 22. The centre of mass of an equilateral triangle lies: (a) at centroid
(a) rad/s² (b) m/s² (c) rad/s (d) s/rad 20. The moment of inertia of a solid sphere about its diameter is: (a) 2/5 MR² (b) ½ MR² (c) ¾ MR² (d) 3/5 MR² 21. The angular momentum of a body rotating with angular velocity ω is: (a) Iω (b) Iα (c) Fω (d) mω
(b) m/s² (c) rad/s (d) s/rad 20. The moment of inertia of a solid sphere about its diameter is: (a) 2/5 MR² (b) ½ MR² (c) ¾ MR² (d) 3/5 MR² 21. The angular momentum of a body rotating with angular velocity ω is: (a) Iω (b) Iα (c) Fω (d) mω 22. The centre of mass of an equilateral triangle lies:
(c) rad/s (d) s/rad 20. The moment of inertia of a solid sphere about its diameter is: (a) 2/5 MR² (b) ½ MR² (c) ¾ MR² (d) 3/5 MR² 21. The angular momentum of a body rotating with angular velocity ω is: (a) Iω (b) Iα (c) Fω (d) mω 22. The centre of mass of an equilateral triangle lies:
20. The moment of inertia of a solid sphere about its diameter is: (a) 2/5 MR² (b) ½ MR² (c) ¾ MR² (d) 3/5 MR² 21. The angular momentum of a body rotating with angular velocity ω is: (a) Iω (b) Iα (c) Fω (d) mω 22. The centre of mass of an equilateral triangle lies:
20. The moment of inertia of a solid sphere about its diameter is: (a) 2/5 MR² (b) ½ MR² (c) ¾ MR² (d) 3/5 MR² 21. The angular momentum of a body rotating with angular velocity ω is: (a) Iω (b) Iα (c) Fω (d) mω 22. The centre of mass of an equilateral triangle lies:
 (a) 2/5 MR² (b) ½ MR² (c) ⅔ MR² (d) 3/5 MR² 21. The angular momentum of a body rotating with angular velocity ω is: (a) Iω (b) Iα (c) Fω (d) mω 22. The centre of mass of an equilateral triangle lies:
 (a) 2/5 MR² (b) ½ MR² (c) ⅔ MR² (d) 3/5 MR² 21. The angular momentum of a body rotating with angular velocity ω is: (a) Iω (b) Iα (c) Fω (d) mω 22. The centre of mass of an equilateral triangle lies:
(c) ² / ₃ MR ² (d) 3/5 MR ² 21. The angular momentum of a body rotating with angular velocity ω is: (a) Iω (b) Iα (c) Fω (d) mω 22. The centre of mass of an equilateral triangle lies:
(c) ² / ₃ MR ² (d) 3/5 MR ² 21. The angular momentum of a body rotating with angular velocity ω is: (a) Iω (b) Iα (c) Fω (d) mω 22. The centre of mass of an equilateral triangle lies:
 (d) 3/5 MR² 21. The angular momentum of a body rotating with angular velocity ω is: (a) Iω (b) Iα (c) Fω (d) mω 22. The centre of mass of an equilateral triangle lies:
 21. The angular momentum of a body rotating with angular velocity ω is: (a) lω (b) lα (c) Fω (d) mω 22. The centre of mass of an equilateral triangle lies:
 (a) Iω (b) Iα (c) Fω (d) mω 22. The centre of mass of an equilateral triangle lies:
 (a) Iω (b) Iα (c) Fω (d) mω 22. The centre of mass of an equilateral triangle lies:
 (b) lα (c) Fω (d) mω 22. The centre of mass of an equilateral triangle lies:
(c) Fω (d) mω 22. The centre of mass of an equilateral triangle lies:
22. The centre of mass of an equilateral triangle lies:
(b) at vertex(c) at midpoint of base(d) outside triangle
23. For a uniform circular ring, the radius of gyration about its centre =
(a) R
(b) R/√2
(c) R/2
(d) 2R

(a) 2 rad/s² (b) 0.5 rad/s²

(c) 5 rad/s ² (d) 10 rad/s ²	
25. The perpendicular distance between two equal and opposite	e forces is called:
(a) moment arm	
(b) lever arm	
(c) couple arm	
(d) torque	
	<u> </u>
26. The SI unit of moment of inertia is:	
(a) kg·m²	
(b) kg⋅m	
(c) N·m²	
(d) J	
27. In pure rolling motion, the velocity of the point of contact is: (a) zero (b) maximum (c) minimum	
(d) ωR	
28. The law of conservation of angular momentum holds when:(a) net external torque = 0	
(b) net force = 0	
(c) angular acceleration = constant	
(d) angular velocity = constant	
(a) angular velocity constant	
29. A rotating body possesses:	
(a) kinetic energy	
(b) potential energy	
(c) pressure energy	
(d) both (a) and (b)	
30. The parallel axis theorem gives relation between moments o (a) parallel axes	of inertia about:

(b) perpendicular axes

(c) same axes (d) intersecting axes
31. The moment of inertia of a hollow sphere about its diameter =
(a) ² / ₃ MR ²
(b) ½ MR ²
(c) 2/5 MR ²
(d) 3/5 MR ²
32. The torque acting on a particle is perpendicular to:
(a) r
(b) F
(c) both (a) and (b)
(d) none
33. When a dancer spreads her arms, her angular velocity:
(a) decreases
(b) increases
(c) remains same
(d) becomes infinite
34. Work done by a torque τ for angular displacement θ is:
(a) τθ
(b) τ/θ
(c) θ/τ
(d) $\tau^2\theta$
35. The rotational kinetic energy of a flywheel depends on:
(a) I and ω
(b) only ω
(c) only I
(d) radius
36. If a torque-free system is in motion, angular momentum is:
(a) conserved

(b) not conserved

(c) zero (d) decreasing	
37. The ratio of translational to rotational kinetic energy for p surface is:	ure rolling on a horizontal
(a) depends on shape (b) always 1:1	
(c) 2:1	
(d) 1:2	
38. A rigid body is said to be in equilibrium if:	Co
(a) $\Sigma F = 0$ and $\Sigma T = 0$	
(b) $\Sigma F = 0$	
(c) $\Sigma T = 0$	
(d) ΣF ≠ 0	
39. The rotational analogue of linear momentum is:	
(a) angular momentum	
(b) moment of inertia	
(c) torque	
(d) angular velocity	
40. The moment of inertia of a circular disc about tangent in	its nlane is:
(a) 3/2 MR ²	no piano io.
(b) ½ MR²	
(c) MR ²	
(d) 2/5 MR ²	
41. The rate of change of angular momentum equals:	
(a) torque	
(b) angular velocity	
(c) acceleration	
(d) angular displacement	
42. Angular momentum of a particle of mass <i>m</i> moving with	velocity v in a circle of radius r
is:	
(a) mvr	

(b) mv²r (c) mr²	
(d) mvr ²	
43. A rigid body rotates with angular acceleration α under	r torque τ. then τ/α = ?
(a) I	1 /
(b) ω	
(c) L	
(d) F	
44. The unit of angular displacement is:	
(a) radian	
(b) degree	
(c) revolution	
(d) all of these	
45. In rotational motion, kinetic energy depends on: (a) I and ω^2	
(b) ω only	
(c) I only	
(d) α	
46. The total angular momentum of a system is conserve	nd when:
(a) net external torque = 0	Wildii.
(b) net force = 0	
(c) moment of inertia = constant	
(d) ω = constant	
47 TI 1 C C C C II NA	
47. The centre of mass of Earth-Moon system lies:	
(a) inside Earth	
(b) inside Moon	
(c) midway between	
(d) outside both	
48. Torque is the rotational analogue of:	

(a) force(b) mass

- (c) energy
- (d) power
- **49.** A particle moves in a circle of radius r with uniform speed v, its angular momentum about the centre is:
- (a) mvr
- (b) mv/r
- (c) mr/v
- (d) mv²r
- 50. The moment of inertia of a uniform disc about any diameter is:
- (a) ½ MR²
- (b) $\frac{1}{4}$ MR²
- (c) 3 MR2
- (d) 3/4 MR²

ANSWERS – SET 3

- 1 (a) 2 (a) 3 (a) 4 (a) 5 (a) 6 (b) 7 (a) 8 (d) 9 (c) 10 (c)
- 11 (d) 12 (a) 13 (a) 14 (a) 15 (a) 16 (a) 17 (a) 18 (a) 19 (a) 20 (a)
- 21 (a) 22 (a) 23 (a) 24 (c) 25 (c) 26 (a) 27 (a) 28 (a) 29 (a) 30 (a)
- 31 (a) 32 (c) 33 (a) 34 (a) 35 (a) 36 (a) 37 (a) 38 (a) 39 (a) 40 (a)
- 41 (a) 42 (a) 43 (a) 44 (d) 45 (a) 46 (a) 47 (a) 48 (a) 49 (a) 50 (a)