ATOMIC STRUCTURE

Set 4

- 1. Dalton's atomic theory could NOT explain:
- a) Law of conservation of mass
- b) Law of constant composition
- c) Law of multiple proportion
- d) The phenomenon of electricity
- 2. The charge on the particles in canal rays depends on:
- a) The nature of the gas
- b) The material of the cathode
- c) The voltage applied
- d) The size of the tube
- 3. The specific charge (e/m) of a proton is _____ that of an electron.
- a) Greater than
- b) Less than
- c) Equal to
- d) Sometimes greater, sometimes less
- 4. The neutron is:
- a) Positively charged
- b) Negatively charged
- c) Neutral
- d) Both positive and negative
- 5. In Rutherford's nuclear model, the electrons:
- a) Are stationary
- b) Revolve around the nucleus
- c) Are embedded in the nucleus
- d) Are outside the nucleus but not moving
- 6. The ratio of the atomic radius to the nuclear radius is about:

- a) 10
 b) 10²
 c) 10⁵
 d) 10¹⁰

 7. The number of electrons in an ion with 16 protons and a charge of -2 is:
 a) 14
 b) 16
 c) 18
 d) 20

 8. Which of the following pairs are isobars?
 a) ¹H and ²H
 b) ¹⁴C and ¹⁴N
 c) ¹⁶O and ¹⁸O
 - 9. All isotopes of an element have the same:
 - a) Mass number

d) 23Na and 24Mg

- b) Number of neutrons
- c) Atomic number
- d) Atomic mass
- 10. The major problem with Rutherford's model concerning atomic stability was resolved by:
- a) Introducing quantized orbits
- b) Introducing a positive nucleus
- c) Introducing neutrons
- d) Introducing wave nature
- 11. The energy of a quantum of radiation is:
- a) Inversely proportional to its frequency
- b) Directly proportional to its wavelength
- c) Directly proportional to its frequency

- d) Independent of frequency
- 12. A black body is:
- a) A perfect absorber and emitter of radiation
- b) A body that appears black
- c) A body that reflects all radiation
- d) A body at 0 K
- 13. In the photoelectric effect, the number of ejected electrons is proportional to the:
- a) Frequency of light
- b) Wavelength of light
- c) Intensity of light
- d) Work function
- 14. The kinetic energy of photoelectrons increases with:
- a) Increase in wavelength
- b) Decrease in frequency
- c) Increase in intensity
- d) Increase in frequency
- 15. The line spectrum of hydrogen demonstrates that energy is:
- a) Continuous
- b) Quantized
- c) Wave-like
- d) Not conserved
- 16. The wavelength of the first line in the Balmer series is:
- a) 656.3 nm
- b) 486.1 nm
- c) 434.0 nm
- d) 410.2 nm
- 17. The energy of an electron in the first excited state (n=2) of hydrogen is:

- a) -2.18×10^{-18} J
- b) -1.09×10^{-18} J
- c) -5.45×10^{-19} J
- d) -2.42×10^{-19} J
- 18. The radius of the Bohr orbit is proportional to:
- a) n
- b) n²
- c) 1/n
- d) 1/n²
- 19. The energy of an electron in a hydrogen-like ion (He⁺) in the ground state is:
- a) -2.18×10^{-18} J
- b) -4.36×10^{-18} J
- c) -8.72×10^{-18} J
- d) -1.09×10^{-18} J
- 20. The de Broglie wavelength of a ball of mass 100g moving at 100 m/s is:
- a) 6.626 × 10⁻³⁴ m
- b) 6.626×10^{-35} m
- c) 6.626×10^{-36} m
- d) 6.626×10^{-32} m
- 21. The Heisenberg Uncertainty Principle is negligible for:
- a) Electrons
- b) Protons
- c) Macroscopic objects
- d) Atomic nuclei
- 22. The Schrödinger wave equation is a:
- a) Simple algebraic equation
- b) Differential equation
- c) Trigonometric equation

d)	Vector	equation

 23. The probability density (ψ²) is always: a) Positive b) Negative c) Zero d) Complex
24. For I=3, the subshell is: a) s b) p c) d d) f
25. The number of orbitals with n=3 and l=1 is: a) 1 b) 3 c) 5 d) 7
26. The maximum number of electrons that can be accommodated in all the orbitals with n=2 and l=1 is: a) 2 b) 6 c) 8 d) 10
27. The correct set of quantum numbers for an electron in a 2p orbital is: a) n=2, l=1, m_l=0, m_s=+1/2 b) n=2, l=0, m_l=0, m_s=+1/2 c) n=2, l=1, m_l=2, m_s=+1/2 d) n=2, l=1, m_l=1, m_s=0

28. The electronic configuration of Titanium (Z=22) is:

a) [Ar] 4s ² 3d ² b) [Ar] 4s ² 3d ¹⁰ c) [Ar] 4s ¹ 3d ³ d) [Ar] 4s ² 4p ²
29. The element with the configuration 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³ is: a) Vanadium (V) b) Chromium (Cr) c) Manganese (Mn) d) Iron (Fe)
30. Which of the following has the highest number of unpaired electrons? a) Fe^{2^+} b) Fe^{3^+} c) Co^{2^+} d) Ni^{2^+}
31. The total number of electrons that can be accommodated in the f subshell is: a) 2 b) 6 c) 10 d) 14
32. The number of angular nodes for a d orbital is: a) 0 b) 1 c) 2 d) 3
33. The number of radial nodes for a 3s orbital is: a) 0 b) 1 c) 2

d) 3	,
------	---

- 34. The electronic configuration of Cu⁺ ion is:
- a) [Ar] 4s1 3d9
- b) [Ar] 4s² 3d⁹
- c) [Ar] 3d¹⁰
- d) [Ar] 4s² 3d⁸
- 35. The pair of ions with the same electronic configuration is:
- a) Na⁺, Mg²⁺
- b) K⁺, Cl⁻
- c) Ca²⁺, S²⁻
- d) Al³⁺, O²⁻
- 36. The wavelength of a photon with energy 3.3×10⁻¹⁹ J is:
- a) 600 nm
- b) 500 nm
- c) 400 nm
- d) 300 nm
- 37. The frequency of light required to eject an electron with kinetic energy 4.2×10⁻¹⁹ J from a metal with work function 3.0×10⁻¹⁹ J is:
- a) 1.74×10¹⁵ Hz
- b) 1.09×10¹⁵ Hz
- c) 7.24×10¹⁴ Hz
- d) 5.43×10¹⁴ Hz
- 38. The maximum number of electrons that can have the quantum number n=3, l=0 is:
- a) 2
- b) 6
- c) 10
- d) 14

39. The orbital with zero angular momentum is:a) s orbitalb) p orbitalc) d orbitald) f orbital
40. The number of unpaired electrons in Ni ²⁺ (Z=28) is: a) 0 b) 2 c) 4 d) 6
41. The correct order of increasing energy of orbitals for multi-electron atoms is: a) 3s < 3p < 3d < 4s b) 3s < 3p < 4s < 3d c) 3s < 4s < 3p < 3d d) 4s < 3s < 3p < 3d
42. The element with the configuration [Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ³ is: a) Bismuth (Bi) b) Lead (Pb) c) Polonium (Po) d) Astatine (At)
43. The number of electrons with I=1 in a nitrogen atom is: a) 2 b) 3 c) 5 d) 7
44. The ratio of the radii of the first three Bohr orbits is: a) 1:2:3 b) 1:4:9

c) 1:8:27
d) 1:1/2:1/3
45. The velocity of an electron in the first Bohr orbit of hydrogen is:
a) c/137
b) 137c
c) c/100
d) 100c
46. The ionization energy of a hydrogen atom in its ground state is:
a) 2.18 × 10 ⁻¹⁸ J
b) 1.09 × 10 ⁻¹⁸ J
c) 13.6 eV
d) 3.4 eV
47. The number of waves made by an electron in one complete revolution
in the n=3 Bohr orbit is:
a) 1
b) 2
-, -

48. The magnetic quantum number specifies the:

49. The energy of an orbital depends on 'n' and 'l' for:

c) 3 d) 4

a) Energy of the orbital b) Shape of the orbital

d) Spin of the electron

a) Hydrogen atom

d) All atoms

b) Hydrogen-like ions c) Multi-electron atoms

c) Orientation of the orbital

- 50. The electronic configuration that violates the Aufbau principle is:
- a) 1s22s2p63s2
- b) 1s²2s²2p⁶3s¹3p¹
- c) 1s²2s²2p⁶3s²3p⁶4s²
- d) 1s²2s²2p⁶3s²3p⁶4s¹3d⁵

Answer Key: Set 4

- d) The phenomenon of electricity
- 2. a) The nature of the gas
- b) Less than (because mass of proton is larger)
- 4. c) Neutral
- 5. b) Revolve around the nucleus
- 6. c) 10⁵
- c) 18 (16 protons + 2 extra electrons)
- 8. b) 14C and 14N
- 9. c) Atomic number
- 10.a) Introducing quantized orbits
- 11.c) Directly proportional to its frequency
- 12.a) A perfect absorber and emitter of radiation
- 13.c) Intensity of light
- 14. d) Increase in frequency
- 15.b) Quantized
- 16.a) 656.3 nm
- 17. c) -5.45 × 10⁻¹⁹ J (E_2 = -R_H/4)
- 18.b) n²
- 19. c) -8.72×10^{-18} J (E $\mathbb{N} = -R_H \times \mathbb{Z}^2/n^2$, for He+, Z=2, n=1)
- 20. b) 6.626 × 10⁻³⁵ m (λ = h/mv)
- 21.c) Macroscopic objects
- 22.b) Differential equation
- 23.a) Positive
- 24. d) f
- 26.b) 6 (3 orbitals * 2 electrons each)
- 27. a) n=2, l=1, m_l=0, m_s=+1/2
- 28. a) [Ar] 4s² 3d²

- 29. a) Vanadium (V) (Z=23)
- 30.b) Fe³⁺ ([Ar] 3d⁵ 5 unpaired electrons)
- 31. d) 14 (7 orbitals * 2 electrons)
- 32.c) 2 (Number of angular nodes = I)
- 33. c) 2 (Number of radial nodes = n I 1 = 3 0 1)
- 34.c) [Ar] 3d10 (Cu is [Ar] 4s1 3d10, Cu+ loses the 4s electron)
- 35.b) K+, Cl- (Both have 18 electrons: [Ar])
- 36. a) 600 nm (E = hc/λ, calculate λ)
- 37. a) 1.74×10^{15} Hz (Use hv = K.E. + W_0)
- 38. a) 2 (n=3, l=0 is the 3s orbital)
- 39. a) s orbital (I=0)
- 40.b) 2 (Ni is [Ar] $4s^2$ $3d^8$, Ni²⁺ is [Ar] $3d^8 \rightarrow 2$ unpaired electrons)
- 41.b) 3s < 3p < 4s < 3d
- 42.a) Bismuth (Bi) (Z=83)
- 43.b) 3 (Electrons in p orbitals: 2p³)
- 44.b) 1:4:9 (r\lappa ∞ n²)
- 45. a) c/137 (≈ 1/137 of the speed of light)
- 46. c) 13.6 eV ($|E_1|$ = 2.18×10⁻¹⁸ J / 1.6×10⁻¹⁹ J/eV)
- 47.c) 3 (de Broglie's condition for stationary orbits: circumference = nλ)
- 48.c) Orientation of the orbital
- 49.c) Multi-electron atoms
- 50.b) 1s²2s²2p⁶3s¹3p¹ (The 3p orbital is filled before the 3s orbital is fully occupied, violating Aufbau)