

GROUP -A (समूह -3)

MCQ Type Questions/बहुविकल्पीय प्रश्न

1. who is the father of Genetics?
 (a) Morgan (b) Mendel
 (c) Griffith (d) None of these

1. आनुवंशिकी का पिता किसे कहते हैं ?
 (a) मोरगन (b) मैंडल
 (c) ग्रीफित (d) इनमें से कोई नहीं

2. Mendel studied how many contrasting traits in pea plants?
 (a) 5 (b) 6
 (c) 4 (d) 7

2. मैंडल ने मटर के पौधे में कितने विपर्यासी गुणों का अध्ययन किया ?
 (a) 5 (b) 6
 (c) 4 (d) 7

3. What is the genotype and phenotype ratio in incomplete dominance?
 (a) 3:1 (b) 1:2:1
 (c) 2:1:1 (d) 9:7

3. अपूर्ण प्रभाविता में जीनोटाइप और फ़िनोटाइप अनुपात कितना होता है ?
 (a) 3:1 (b) 1:2:1
 (c) 2:1:1 (d) 9:7

4. Which of the following shows codominance?
 (a) ABO blood group (b) Snapdragon
 (c) Pea (d) Drosophila

4. इनमें से कौन सह-प्रभाविता प्रदर्शित करता है ?
 (a) ABo रुधिर वर्ग (b) श्वान पुष्प
 (c) मटर (d) ड्रोसोफिला

5. Genes which code for a pair of contrasting traits are Known as-
 (a) Recessive (b) heterozygous
 (c) Allele (d) Chromosome

5. विपरीत गुणों के जोड़े निर्धारित करने वाले जीन क्या कहलाते हैं ?
 (a) अप्रभावी (b) विषमयुगमजी
 (c) ऐलील (d) क्रोमोसोम

6. Morgan experiments was on-
 (a) Sand Fly (b) House Fly
 (c) Fruit fly (d) None of these

6. मार्गन का प्रयोग किस पर था ?
 (a) सैंड फ्लाई (b) घरेलू मक्की
 (c) फ्रुट फ्लाई (d) इनमें से कोई नहीं

7. In honey bee sex-determination and development is through -
 (a) Gametogenesis (b) Oogenesis
 (c) Parthenogenesis (d) Double fertilization

7. मधुमक्खियों में लिंग निर्धारण और विकास कैसे होता है ?
 (a) युमक जनन (b) अंडजनन
 (c) अनिषेकजनन (d) दोहरा निषेचन

8. The phenomenon in which a single gene controls two or more characters is known as -
 (a) Pleiotropism (b) Polymorphism
 (c) Codominance (d) None of these

वह प्रक्रिया जिसमें एक जीन दो या अधिक लक्षणों को नियंत्रित करता है, उसे कहते हैं।
 (a) प्लीयोट्रॉपिज्म (b) पॉलीमॉरफिज्म
 (c) कोडोमिनेन्स (d) इनमें से कोई नहीं

9. In which of the following show complete linkage?
 (a) Human (b) Pea
 (c) Drosophila (d) None of these

इनमें से कौन पूर्ण सहलग्रता प्रदर्शित करता है ?
 (a) मनुष्य (b) मटर
 (c) ड्रोसोफिला (d) इनमें से कोई नहीं

10. Who had coined the term Mutation?
 (a) Hugo De Vries (b) Morgan
 (c) Alexander Fleming (d) Mendel

10. उत्परिवर्तन शब्द किसने दिया था ?
 (a) ह्यो डी ब्रिज (b) मोरगन
 (c) एलेंडर फ्लॉर्मिंग (d) मैंडल

11. The phenotypic ratio of a dihybrid cross is:
 (a) 9:3:3:1 (b) 9:7
 (c) 1:2:1 (d) 3:1

11. द्विशंकर संकरण में फिनोटाइप अनुपात है -
 (a) 9:3:3:1 (b) 9:7
 (c) 1:2:1 (d) 3:1

12. The Inheritance of flower colour (pink) in *Mirabilis jalapa* is the example of-
 (a) Codominance
 (b) Linkage
 (c) Incomplete dominance
 (d) Complete dominance

12. गुलअब्बास में पुष्प का रंग (गुलाबी) किस वंशागति का उदाहरण है।
 (a) सहप्रभाविता (b) सहलग्रता
 (c) अपूर्ण प्रभाविता (d) पूर्ण प्रभाविता

13. **Ratio of Mendel's monohybrid cross is-**
 (a) 9:3:1 (b) 2:1
 (c) 9:7 (d) 3:1

13. **मेंडल के एकसंकर क्रॉस का अनुपात क्या है?**
 (a) 9:3: 3:1 (b) 2:1
 (c) 9:7 (d) 3:1

14. **A person suffering from colour blindness cannot differentiate which of the following colours.**
 (a) Blue and green colour
 (b) Red and green colour
 (c) Red and yellow colour
 (d) Red and blue colour

14. **वर्णाधता से पीड़ित व्यक्ति निम्नलिखित में से किन रंगों में भेद नहीं कर पाता?**
 (a) नीला एवं हरा रंग (b) लाल एवं हरा रंग
 (c) लाल एवं पीला रंग (d) लाल एवं नीला रंग

15. **In Sickle cell anaemia the substitution of Glutamic acid by-**
 (a) glycine (b) phenylalanine
 (c) Valine (d) none of these

15. **सीकल सेल एनीमिया में ग्लूटामिक एसिड का प्रतिस्थापन किसके द्वारा होता है?**
 (a) ग्लासीन (b) फिनाइललेनाइन
 (c) वेलीन (d) इनमें से कोई नहीं

Answer

1 - b	6 - c	11 - a
2 - d	7 - c	12 - c
3 - b	8 - a	13 - d
4 - a	9 - c	14 - b
5 - c	10 - a	15 - c

Very Short Answer Type Question/अति लघु उत्तरीय प्रश्न

1. **How Many years did Mendel study the pea plant?**
 Ans. For seven years, he studied the Pea plant that grew in the garden of his monastery.

1. **मेंडल ने कितने वर्षों तक मटर के पौधे का अध्ययन किया ?**
 उत्तर- मेंडल ने 7 वर्षों तक अपने बगीचे में लगे मटर पौधे का अध्ययन किया ।

2. **What is allele ?**
 Ans. Genes which code for a pair of contrasting traits are known as allele.

2. **अलील किसे कहते हैं?**
 उत्तर- एक ही गुण के विपरीत विकल्पी (विपरीत विकल्पी) लक्षणों को प्रकट करने वाले कारक को एक दूसरे का अलील कहते हैं।

3. **What is the scientific name of fruit fly?**
 Ans. Drosophila melanogaster is the scientific name of fruit fly.

3. **फल मक्खी का वैज्ञानिक नाम क्या है ?**
 उत्तर- ड्रोसोफिला मेलनोगेस्टर फल मक्खी का वैज्ञानिक नाम है।

4. **Give an example of polygenic inheritance?**
 Ans. Skin colour of human is an example of polygenic inheritance.

4. **बहुजीनी वंशागति का एक उदाहरण है।**
 उत्तर- मनुष्य की त्वचा का रंग बहुजीनी वंशागति का एक उदाहरण है।

5. **What is point mutation ?**

Ans. A point mutation is a genetic mutation where a single nucleotide base is changed, inserted or deleted from a DNA sequence.

5. **बिंदु उत्परिवर्तन किसे कहते हैं?**
 उत्तर- DNA के किसी एकल क्षार युग्म के क्रम में होने वाला परिवर्तन बिंदु उत्परिवर्तन कहलाता है।

6. Write two examples of Mendelian disorders.

Ans. Examples of Mendelian disorders -

(a) Sickle cell anemia
 (b) Haemophilia
 (c) Colour blindness.

6. मेंडलीय विकार के दो उदाहरण लिखें।

उत्तर - मेंडलीय विकार के उदाहरण-
 (a) दात्र कोशिका अरक्तता (सिकल सेल एनिमिया)
 (b) हीमोफिलिया
 (c) वर्णाधता

7. Write two examples of Chromosomal disorders.

Ans. Examples of chromosomal disorders-

(a) Down's Syndrome
 (b) Klinefelter's Syndrome
 (c) Turner's Syndrome

7. क्रोमोसोमीय विकार के दो उदाहरण लिखें।

उत्तर- क्रोमोसोमीय विकार के उदाहरण-
 (a) डाउन सिंड्रोम
 (b) क्लाइनफेल्टर सिंड्रोम
 (c) टर्नर सिंड्रोम

8. Who had proposed the chromosomal theory of the inheritance?

Ans. Sutton and Theodor Boveri.

8. वंशागति के क्रोमोसोम वाद को किसने प्रस्तावित किया?

उत्तर- स्टन एवं थियोडोर बोवेरी

9. What is emasculation?

Ans. Removal of anther from flower before maturity is called emasculation.

9. विपुंसन क्या है?

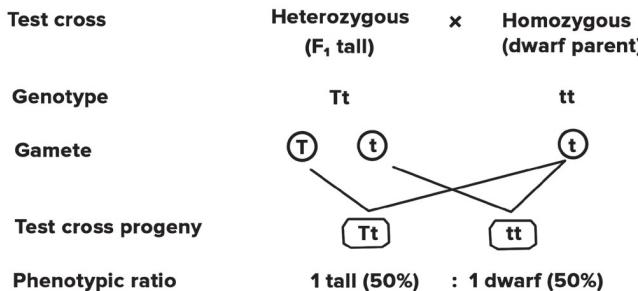
उत्तर- पूष्प से परिपक्वता के पहले पराग कोष को हटा दिए जाने की क्रिया विपुंसन कहलाती है।

Short Answer Type Question/लघु उत्तरीय प्रश्न

1. Mention the advantages of selecting pea plant for experiment by Mendel.

Ans. The advantages of selecting pea plant for experiment by Mendel.

(a) It is an annual plant with short life span
 (b) They possess bisexual flower, so easily undergo self-pollination.
 (c) Seven pairs of contrasting characters easily detectable.


1. मेंडल द्वारा प्रयोगों के लिए मटर के पौधे चुनने से क्या लाभ हुए?

उत्तर- मेंडल द्वारा प्रयोगों के लिए मटर के पौधे को चुनने से निम्नलिखित लाभ हुए-

- (a) यह एक वर्षीय पौधा है जिसका जीवन काल अल्प होता है।
- (b) इसमें द्विलिंगी फूल होते हैं, इसलिए स्वपरागण आसानी से होता है।
- (c) इसके सात वैकल्पिक लक्षण आसानी से देखे जा सकते हैं।

2. What is a test cross?

Ans. Crossing of first filial generation individual with its homozygous recessive parent is called test cross. The test cross is used to determine whether the individuals exhibiting dominant character are homozygous or heterozygous.

2. टेस्ट क्रॉस क्या है?

उत्तर - जब प्रथम पीढ़ी के संकर पौधों को समयांगजी अप्रभावी जनक से क्रॉस करते हैं तो उसे टेस्ट क्रॉस कहते हैं। इस प्रकार के क्रॉस से यह पता चलता है कि संकर पौधों में प्रभावी लक्षण समयांगजी स्थिति में हैं या विषमयुग्मजी स्थिति में हैं।

3. Explain law of dominance with suitable example.

Ans. law of dominance-characters are controlled by discrete units called factors factors occurs in pairs. when parent's pure contrasting traits are cross together only one form of trait appears in the next generation the hybrid offsprings will exhibit only the dominant trait in the phenotype.

Monohybrid cross between true tall plant (TT) and dwarf plant (tt) gives hybrid tall (Tt) in F1 generation. Then selfing between hybrid tall plant gives 3 tall (Tt) and 1 dwarf (tt) in F2 generation. so, In this case tall (T) dominant over small (t) dwarfness that is recessive.

3. मेंडल के प्रभाविता के नियम को उदाहरण के द्वारा समझाएं।

उत्तर- प्रभाविता का नियम- लक्षणों का निर्धारण कारक नामक विविक्त (डिस्क्रीट) इकाइयों द्वारा होता है। कारक जोड़ों में होते हैं। यदि कारक जोड़ों में दो सदर्श असमान हो तो इनमें से एक कारक दूसरे कारक पर प्रभावी हो जाता है अर्थात् एक कारक प्रभावी और दूसरा अप्रभावी होता है।

शुद्ध लंबे पौधे (TT) और बौने पौधे (tt) के बीच एकलशक्त क्रॉस कराने पर प्रथम संतति पीढ़ी में हाइब्रिड लंबे पौधे (Tt) प्राप्त होते हैं। इसके बाद हाइब्रिड लंबे पौधों (Tt) के बीच स्वपरागण कराने पर F2 पीढ़ी में तीन लंबे पौधे और एक बौना पौधा प्राप्त होता है, इस प्रयोग में (T) लंबाई का कारक (t) बौनेपन के कारक के ऊपर प्रभावी हो जाता है।

4. What is linkage? Who was Studied about linkage?

Ans. The inheritance of genes of the same chromosome together and capacity of these genes to retain their parental combination in subsequent generations is known as linkage. Morgan studied about linkage in *Drosophila melanogaster*.

4. सहलग्रता क्या है? इसके बारे में किस वैज्ञानिक ने अध्ययन किया?

उत्तर - एक ही क्रोमोजोम पर उपस्थित जीन अथवा एलील जो अर्धसूत्री विभाजन के समय एक दूसरे से बिना पृथक हुए उसी स्थिति में पीढ़ी दर पीढ़ी स्थानांतरित होते रहते हैं एक दूसरे से सहलग्र होते हैं। ऐसी घटना को सहलग्रता कहते हैं। मोरगन ने ड्रोसॉफिला मेलानोगैस्टर पर सहलग्रता का अध्ययन किया।

5. Write about down syndrome.

Ans. Down syndrome was first described by Longdon down in 1866. It is due to trisomy of 21st chromosome. The total number of chromosome is 47. The affected individual is short statured with small round head furrowed tongue and partially open mouth .Palm is broad with characteristic palm crease. physical, psychomotor and mental development is retarded.

डाउन सिंड्रोम का संक्षिप्त वर्णन करें।

उत्तर- लैनाडन डाउन ने 1866 में डाउन सिंड्रोम का सर्वप्रथम पता लगाया था। यह आनुवांशिक विकार 21 जोड़ी क्रोमोसोम में एक अतिरिक्त प्रति (त्रिसूत्रता) आने के कारण होता है, इस प्रकार क्रोमोजोम्स की कुल संख्या 47 हो जाती है। रोगी व्यक्ति छोटे कद और छोटे गोल सिर का होता है। जीभ में खोच होता है और मुँह आंशिक रूप से खुला रहता है। चौड़ी हथेली में अभिलाक्षणिक पाम कीज होती है। शारीरिक, मनःप्रेरक और मानसिक विकास कम होता है।

6. Write about Klinefelter's and Turner's syndrome.

Ans. Klinefelter's syndrome - It is genetic disorder caused due to the presence of an additional copy of X chromosome resulting into a karyotype of 47,44+XXY. Individual has over all masculine development but gynecomastia is also expressed. Such individuals are sterile.

Turner's syndrome-This disorder is caused due to the absence of one of the X chromosome in female.so, karyo type is 45, 44+XO. Such females are sterile as ovary are rudimentary.

6. क्लाइनफेल्टर और टर्नर सिंड्रोम के बारे में लिखें।

उत्तर - क्लाइनफेल्टर सिंड्रोम- अनुवांशिक विकार का कारण X क्रोमोसोम की एक अतिरिक्त प्रतिलिपि है जिसके कारण केंद्रक में 47(44+XXY) क्रोमोसोम हो जाते हैं। ऐसे व्यक्ति पूर्ण रूप से पुंप्रधान होते हैं किंतु मादा लक्षण गायनेकोमैस्टिया भी व्यक्त करते हैं। ऐसे व्यक्ति बांद्जा होते हैं।

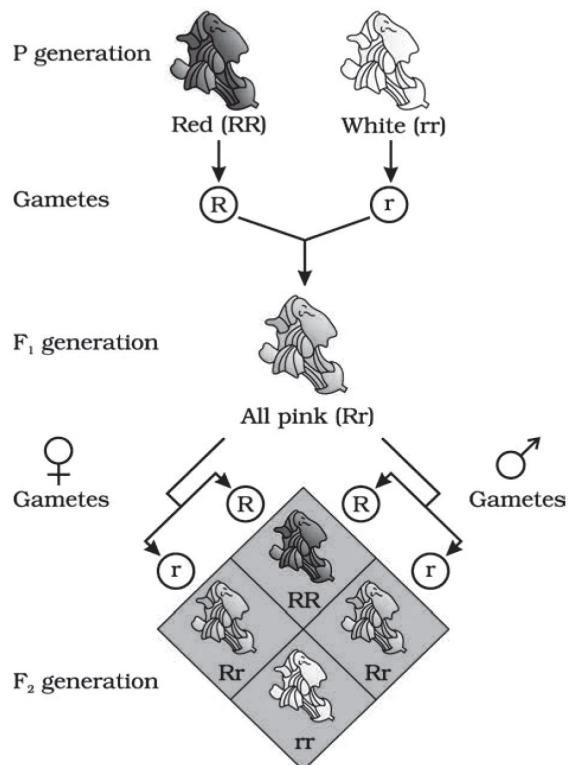
टर्नर सिंड्रोम- इस विकार के कारण नारी में एकX क्रोमोजोम का अभाव होता है अर्थात् क्रोमोजोम की स्थिति 45 (44+ XO) होती है। ऐसी नारी बांद्जा होती है क्योंकि अंडाशय अल्प वर्धित होते हैं।

7. What is codominance? Write an example of codominance.

Ans. The alleles of a gene pair in a heterozygote are expressed equally within an organism thus, the trait is neither dominant nor recessive the offspring will be a combination of the parent.

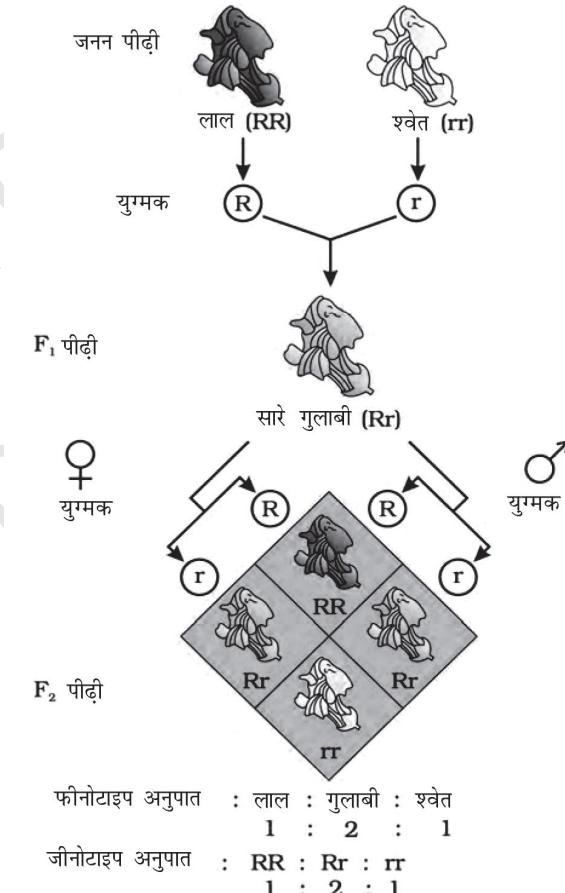
Example-ABO blood group in human. ABO blood groups are controlled by the gene I. The gene I has three alleles IA, IB and i.

7. सहप्रभाविता क्या है? एक उदाहरण लिखें।


उत्तर- किसी जीव में एलील के जोड़े के बीच का संबंध प्रभावी एवं अप्रभावी जैसा ना हो, बल्कि दोनों का प्रभाव संकरों पर एक साथ पड़ता हो तो ऐसी स्थिति को सहप्रभाविता कहते हैं तथा इस प्रकार के एलील को सह प्रभावी एलील्स कहते हैं।

उदाहरण- मानव का ABO रक्त समूह। ABO रक्त समूह को जीन। नियंत्रित करता है। इस जीन। के तीन अलील IA, IB और i होते हैं।

Long Answer Type Questions/ दीर्घ उत्तरीय प्रश्न


1. What is Incomplete dominance. explain with suitable example.

Ans. The F₁ had a phenotype that did not resemble either of the two parents and was in between the two, is called incomplete dominance. The inheritance of flower colour in the dog flower (snapdragon or *Antirrhinum sp.*) is a good example of incomplete dominance. In a cross between true-breeding red-flowered (RR) and true-breeding white-flowered plants (rr), the F₁ (Rr) was pink. When the F₁ was self-pollinated the F₂ resulted in the following ratio 1 (RR) Red: 2 (Rr) Pink: 1 (rr) White. Here the genotype ratios were Gametes exactly as we would expect in any mendelian monohybrid cross, but the phenotype ratios had changed from the 3:1 dominant that R was not completely dominant over r.

Figure 4.6 Results of monohybrid cross in the plant Snapdragon, where one allele is incompletely dominant over the other allele

1. **अपूर्ण प्रभाविता क्या है? उदाहरण के साथ समझाएं।**
उत्तर- प्रथम संतति पीढ़ी में ऐसा फिनोटाइप आ जाता है जो किसी भी जनक से नहीं मिलता जूलता बल्कि इनके बीच का लगता है। श्वान पुष्प फ्लैगन/एंटीरिनम में पुष्प रंग की वंशागति अपूर्ण प्रभाविता का अच्छा उदाहरण है। प्रजननी लाल फूल वाली (RR) और प्रजननी सफेद फूल वाली (rr) प्रजाति के संकरण के परिणाम स्वरूप प्रथम संतति पीढ़ी को स्वयं परागित किया गया तो परिणामों का अनुपात 1(RR)लाल : 2 (Rr) गुलाबी : 1(rr) सफेद था। यहां पर फिनोटाइप अनुपात वहीं था जो किसी भी मेंडलीय एकसंकरण के संकरण में संभावित होता किंतु फेनोटाइप अनुपात 3:1 प्रभावी: अप्रभावी में बदल गया इस उदाहरण में R कारक r कारक पर पूर्णता प्रभावी नहीं रहा। लाल (RR) सफेद (rr) से गुलाबी (Rr) प्राप्त हो गया।

चित्र 5.6 श्वान पुष्प नामक पौधों में एकसंकर संकरण के परिणाम यहां पर एक अलील दूसरे के ऊपर अपूर्णतः प्रभावी है।

2. Describe sex determination in Human with diagram.

Ans. **Sex determination in human**

A human male has an X chromosome and a Y chromosome and 22 pairs of autosomes, making a total of 46. The females have a pair of X chromosomes and 22 pairs of autosomes. The sex chromosomes segregate at

meiosis each sperm cell will receive only one sex chromosome. Hence at the time of spermatogenesis, there will be two types of sperm cells produced in equal numbers, those containing an X chromosome, called Gynosperms and those containing a Y chromosome, called Androsperms. Each of the eggs produced by female will contain one X chromosome. Therefore, the sex of progeny is determined at time of fertilization of egg. If the egg is fertilized by sperm bearing a Y chromosome, the zygote will have an X and Y and will develop into male. If egg is fertilized by X sperm, the zygote will have two X chromosomes and will develop into female.

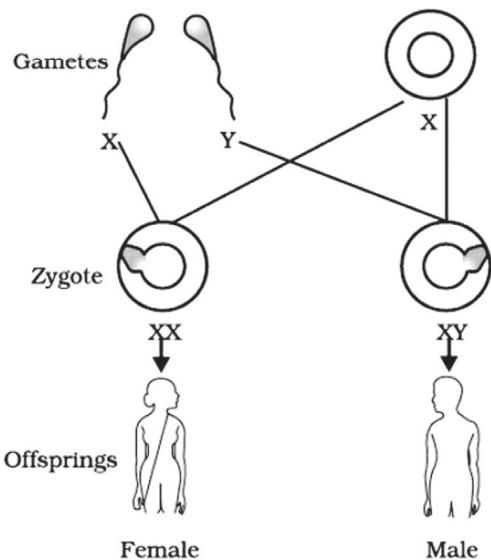
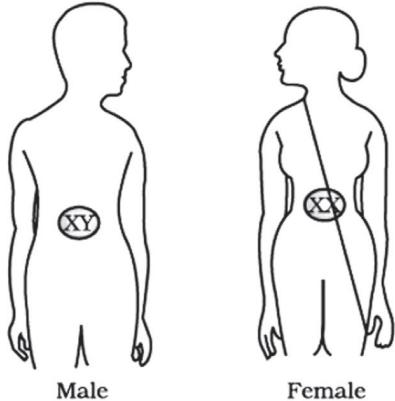



Diagram of sex determination in human

2. मानव में लिंग-निर्धारण का सचित्र वर्णन करें।

उत्तर- नर में एक X क्रोमोसोम और एक Y क्रोमोसोम होता है और 22 जोड़ी अलींग क्रोमोसोम होते हैं इस प्रकार कुल 46 क्रोमोसोम होते हैं। मादा में X क्रोमोसोम का एक जोड़ा होता है और 22 जोड़ी अलींग क्रोमोज़ोसोम पाए जाते हैं, इस प्रकार इनमें भी 46 क्रोमोसोम पाए जाते हैं। नर में शुक्र जनन के समय दो प्रकार के युग्मक बनते हैं कुल उत्पन्न शुक्राणु संख्या का 50 प्रतिशत X युक्त होता है जिन्हें गाइनो स्पर्म कहते हैं और शेष 50 प्रतिशत Y युक्त होते हैं जिन्हें एंडोस्पर्म कहते हैं नर में X के अतिरिक्त एक क्रोमोसोम Y होता है जो नर लक्षण का निर्धारक होता है। मादा में केवल एक ही प्रकार के अंडाणे बनते हैं, जिसमें X क्रोमोसोम होता है। अंडाणे के X या Y धारी क्रोमोसोमों से निषेचित होने की प्रायिकता बराबर- बराबर रहती है। यदि अंडाणे का निषेचन X धारी शुक्राणु से हो गया तो यामनज़ (जाइगोट), मादा (XX) में परिवर्तित हो जाता है। इसके विपरीत Y क्रोमोसोम धारी शुक्राणु से निषेचन होने पर नर संतति (XY) जन्म लेती है। इससे स्पष्ट है कि शुक्राणु की अनुवांशिक सरचना ही शिशु के लिंग का निर्धारण करती है।

3. Write about haemophilia and Sickle cell anaemia.

Ans. Haemophilia-It is a sex-linked recessive disorder. Factors

and are absent in the blood of people affected with haemophilia and hence blood does not clot well. It is cause due to genetic mutation. The heterozygous female (carrier) for hemophilia may transmit the disease to sons. The possibility of a female becoming a hemophilic is extremely rare because mother of such a female has to be at least carrier and the father should be haemophilic.

Sickle cell anaemia- sickle cell anaemia is a type of autosomal recessive genetic disorder, that can be transmitted from parents to the offspring when both the parents are carrier for the gene. The disease is controlled by a single pair of allele, HbA and Hbs. The defect is caused by the substitution of glutamic acid (Glu) by Valine at the 6th position of the beta globin chain of the hemoglobin molecule. It is mendelian disorder. In this disease the oxygen binding capacity of the hemoglobin molecule is reduced and the mutant molecule undergoes changes in its shape from the biconcave shape to the sickle shape.

3. हिमोफिलिया और सिक्कल सेल एनीमिया के बारे में वर्णन करें।

उत्तर- हीमोफिलिया-यह लिंग संलग्न रोग है। इसमें प्रभाव रहित वाहक नारी से नर संतति को रोग का संचार होता है। इस रोग में रुधिर के थक्का बनने से संबंध एकल प्रोटीन प्रभावित होता है। एकल प्रोटीन के अभाव के कारण शरीर में छोटी चोट से भी रुधिर का निकलना बंद नहीं होता है। विषमयुग्मकी नारी (वाहक) से यह रोग पुत्रों में जाता है। नारी की रोग ग्रस्त होने की संभावना विरल होती है, क्योंकि इस प्रकार की नारी की माता को कम से कम वाहक और पिता को हिमोफिलिया से ग्रस्त होना आवश्यक होता है।

दात्र कोशिका अरक्तता (सिक्कल सेल एनीमिया)-यह अलींग क्रोमोजोम लग्न प्रभावी लक्षण है जो जनक उनसे संतति में तभी प्रवेश करता है जबकि दोनों जनक जीन के वाहक होते हैं। इस रोग का नियंत्रण अलील का एक जोड़ा HbA और Hbs करता है। विषमयुग्मकी (HbA Hbs) व्यक्ति रोग मुक्त होते हैं परंतु वे रोग के वाहक होते हैं। उत्परिवर्तित जीन के संतति में पहुंचने की 50 प्रतिशत संभावना होती है। इस विकार का कारण हीमोग्लोबिन अणु की बीटा ग्लोबिन श्रृंखला की छठी स्थिति में एक अमीनो अम्ल ग्लूटामिक अम्ल का वैलीन द्वारा प्रतिस्थापन है। निम्न ऑक्सीजन तनाव में उत्परिवर्तित हिमोग्लोबिन अणु में बहुलीकरण के कारण RBC का आकार ट्वि-अवतल बिंब से बदलकर दात्राकार (हंसिए के आकार जैसा) हो जाता है।