MOTION IN A PLANE

SET 1 – MCQs (Motion in a Plane)

- Q1. Which of the following is a scalar quantity?
- a) Velocity
- b) Acceleration
- c) Force
- d) Temperature

Ans: d

- Q2. A vector quantity has -
- a) Only magnitude
- b) Only direction
- c) Both magnitude and direction
- d) Neither magnitude nor direction

Ans: c

- Q3. Which of the following is not a vector?
- a) Displacement
- b) Momentum
- c) Work
- d) Force

Ans: c

- Q4. A scalar can be added to another scalar -
- a) Only if units are same
- b) Even if units differ
- c) Only if direction is same
- d) Only if magnitude is same

Ans: a

- Q5. The SI unit of displacement is -
- a) m
- b) m/s
- c) m/s²
- d) radian

Ans: a

- **Q6.** Two vectors are equal if –
- a) They have same magnitude only
- b) They have same direction only
- c) They have same magnitude and direction
- d) Their product is same

Ans: c

Q7. Multiplying a vector by -1 gives a) Same vector b) Opposite vector c) Null vector d) Unit vector Ans: b **Q8.** The sum of a vector and its negative is – a) Zero vector b) Unit vector c) Scalar d) Undefined Ans: a Q9. In triangle law of vector addition, the third side represents a) Difference of vectors b) Product of vectors c) Resultant of vectors d) Unit vector Ans: c Q10. Vector addition is a) Not commutative b) Commutative c) Sometimes commutative d) Never associative Ans: b Q11. A vector can be resolved into components – a) Only along x-axis b) Only along y-axis c) Along any two non-parallel directions d) Along the resultant direction Ans: c **Q12.** The x-component of vector A making angle θ with x-axis is – a) A cos θ b) A sin θ c) A tan θ d) A cot θ Ans: a **Q13.** If vector $A = 3\hat{i} + 4\hat{j}$, its magnitude is – a) 5 b) 7 c) 12 d) 25

Ans: a

Q14. The unit vector along y-axis is – a) î b) ĵ c) k̂ d) Zero vector Ans: b
Q15. Which one is a unit vector? a) $2\hat{i}$ b) $3\hat{j}$ c) $\hat{i} + \hat{j}$ d) $\hat{i}/\sqrt{1}$ Ans: d
Q16. If A = 2î + 3ĵ, B = 4î – ĵ, then Ax + Bx = ? a) 2 b) 4 c) 6 d) 8 Ans: c
Q17. The angle between î and ĵ is – a) 0° b) 45° c) 90° d) 180° Ans: c
Q18. A vector A has components Ax = 12, Ay = 5. Its magnitude is – a) 12 b) 13 c) 17 d) 144 Ans: b
Q19. Which law is used in analytical method of vector addition? a) Law of sines b) Law of cosines c) Both (a) and (b) d) None Ans: b
Q20. A particle is acted upon by two forces F1 and F2 simultaneously. Their resultant depends on – a) Magnitudes only b) Directions only c) Magnitudes and directions both d) None Ans: c

Q21. The position vector $\mathbf{r} = x\mathbf{i} + y\mathbf{j}$. Here x and y are – a) Scalars b) Vectors c) Both d) None Ans: a **Q22.** The average velocity is displacement divided by – a) Distance b) Time interval c) Speed d) Acceleration Ans: b **Q23.** The velocity of a particle is always – a) Along displacement b) Along tangent to path c) Towards centre d) Away from centre Ans: b Q24. The instantaneous acceleration is a) dv/dt b) dr/dt c) dx/dt d) None Ans: a Q25. For motion in 2D, velocity and acceleration vectors can have angle a) Only 0° b) Only 180° c) Between 0° and 180° d) Cannot say Ans: c Q26. Equation of velocity in 2D under constant acceleration is – a) v = v0 + atb) v = u + gtc) v = s/td) v = v0 - gtAns: a **Q27.** In x-y plane, under constant acceleration ax, ay – position is given by – a) $x = v0x t + \frac{1}{2} ax t^2$, $y = v0y t + \frac{1}{2} ay t^2$ b) $x = v0y t + \frac{1}{2} ay t^2$, $y = v0x t + \frac{1}{2} ax t^2$ c) $x = v0 t + at^2$, y = 0d) None

Ans: a

Q28. A particle moves with constant acceleration. Its trajectory is – a) Linear b) Circular c) Parabolic d) Random Ans: c **Q29.** In projectile motion, horizontal motion is – a) Uniformly accelerated b) Uniform c) Retarded d) Oscillatory Ans: b Q30. Vertical motion of projectile is – a) Uniform b) Uniformly accelerated c) Circular d) None Ans: b Q31. The path of a projectile is a) Circle b) Ellipse c) Parabola d) Hyperbola Ans: c Q32. In projectile, horizontal component of velocity remains a) Constant b) Decreasing c) Increasing d) Zero Ans: a Q33. Time of flight = ? a) $(2 \text{ v0 sin }\theta)/g$ b) (v0 cos θ)/g c) (v0 sin θ)/g d) $(2 \text{ v0 cos }\theta)/g$ Ans: a Q34. Maximum height = ? a) $(v0^{2} \cos^{2} \theta)/2g$ b) $(v0^2 \sin^2 \theta)/2g$ c) $(v0^2 \sin^2 \theta)/g$ d) $(v0^2 cos^2 \theta)/g$

Ans: b

Q35. Horizontal range = ? a) $v0^2/g$ b) $v0^2 \sin 2\theta/g$ c) $v0^2 \cos^2 \theta/g$ d) $v0^2 \tan \theta/g$ Ans: b
Q36. The range is maximum when angle of projection is – a) 30° b) 45° c) 60° d) 90° Ans: b
Q37. At maximum height, vertical velocity is – a) g b) 0 c) v0 d) v0 cos θ Ans: b
Q38. The horizontal velocity of projectile at top is – a) 0 b) v0 c) v0 cos θ d) v0 sin θ Ans: c
Q39. If two complementary angles are used, ranges are – a) Different b) Same c) Zero d) Infinite Ans: b
Q40. The trajectory of a projectile is symmetric about – a) Time axis b) Vertical axis c) Line of projection d) Highest point Ans: b
Q41. In uniform circular motion, speed is – a) Variable b) Constant c) Zero d) Infinite Ans: b

Q42. In UCM, acceleration is directed – a) Along tangent b) Away from centre c) Towards centre d) Along velocity Ans: c **Q43.** Centripetal acceleration = ? a) v²/R b) vR c) R/v² d) gR Ans: a **Q44.** Angular speed $\omega = ?$ a) v/R b) vR c) R/v d) v²/R Ans: a **Q45.** Linear speed v = ?a) Rω b) ω/R c) ω²R d) None Ans: a Q46. If T is time period, angular speed = ? a) 2π/T b) T/2π c) 1/T d) 2T/π Ans: a **Q47.** Centripetal acceleration in terms of frequency v = ?a) 2πvR b) $4\pi^2 V^2 R$ c) 2πR/v d) None Ans: b Q48. In UCM, velocity is a) Constant vector b) Changing vector c) Zero vector d) Infinite vector

Ans: b

Q49. In UCM, acceleration vector is -

- a) Constant in magnitude and direction
- b) Constant in magnitude but changing in direction
- c) Zero
- d) Increasing

Ans: b

Q50. The motion of hands of a clock is -

- a) UCM
- b) Projectile
- c) Rectilinear
- d) None

Ans: a