1. In a redox titration, one of the reactants acts as -

a) Oxidising agentb) Reducing agentc) Both (a) and (b)

SET 3 – Redox Titrations & Electrochemical Concepts

	d) Neither
2.	The end point in redox titrations is usually detected by – a) pH indicator b) Redox indicator c) Temperature change d) Pressure change
3.	Which of the following is a redox indicator? a) Phenolphthalein b) Methyl orange c) Diphenylamine d) Thymol blue
4.	Potassium permanganate acts as – a) Reducing agent b) Oxidising agent c) Both d) None
5.	In acidic medium, $KMnO_4$ is reduced to — a) MnO_2 b) Mn^{2+} c) Mn^{3+} d) Mn^{4+}
6.	In neutral medium, KMnO ₄ is reduced to – a) Mn ²⁺ b) MnO ₂ c) MnO ₄ ²⁻ d) Mn ³⁺
7.	In alkaline medium, KMnO $_4$ is reduced to – a) MnO $_2$ b) Mn $_4^{2^-}$ c) MnO $_4^{2^-}$ d) Mn $_4^{3^+}$
8.	In the reaction $MnO_4^- \to Mn^{2^+}$, number of electrons gained is – a) 2 b) 3 c) 5 d) 7
9.	In the titration between oxalic acid and KMnO ₄ , oxalic acid acts as - a) Oxidising agent

b) Reducing agentc) Catalystd) Salt
 10. The reaction between Fe²⁺ and KMnO₄ is an example of – a) Acid-base reaction b) Redox reaction c) Precipitation reaction d) None
 11. Equivalent weight of KMnO₄ in acidic medium is – a) M/5 b) M/3 c) M/2 d) M/1
12. Equivalent weight of KMnO₄ in neutral medium is – a) M/3 b) M/5 c) M/2 d) M
 13. Equivalent weight of KMnO₄ in alkaline medium is – a) M/5 b) M/3 c) M/2 d) M
 14. In redox titration, the oxidising agent is titrated against a – a) Reducing agent b) Oxidising agent c) Acid d) Base
 15. Fe²⁺ → Fe³⁺ is – a) Oxidation b) Reduction c) Disproportionation d) None
 16. Mn⁷⁺ → Mn²⁺ is – a) Oxidation b) Reduction c) Both d) None
17. Which reagent is used in the estimation of Fe ²⁺ in presence of H ₂ SO ₄ ? a) KMnO ₄ b) K ₂ Cr ₂ O ₇ c) I ₂ d) Na ₂ S ₂ O ₃
18. Oxidation number of Mn changes from +7 to +2 when KMnO₄ reacts in – a) Acidic medium

- CLASS XI CHE CH: 7 b) Neutral medium c) Basic medium d) Both b and c 19. The reducing agent in the reaction between FeSO₄ and KMnO₄ is – a) Fe2+ b) Fe³⁺ c) Mn2+

 - d) MnO₄-
 - 20. Redox reactions are also known as
 - a) Electron transfer reactions
 - b) Precipitation reactions
 - c) Acid-base reactions
 - d) Double displacement
 - 21. The apparatus used to measure electrode potential is
 - a) Conductivity meter
 - b) Potentiometer
 - c) Galvanometer
 - d) Ammeter
 - 22. Standard electrode potential is measured at
 - a) 1 atm, 1 M, 25°C
 - b) 1 atm, 0.1 M, 0°C
 - c) 1 atm, 1 M, 0°C
 - d) 1 atm, 1 M, 37°C
 - 23. In electrochemical cell, oxidation occurs at
 - a) Cathode
 - b) Anode
 - c) Both
 - d) None
 - 24. In electrochemical cell, reduction occurs at
 - a) Anode
 - b) Cathode
 - c) Both
 - d) None
 - 25. In Daniell cell, oxidation takes place at
 - a) Zinc electrode
 - b) Copper electrode
 - c) Both
 - d) None
 - 26. In Daniell cell, reduction takes place at
 - a) Zinc electrode
 - b) Copper electrode
 - c) Both
 - d) None
 - 27. In Daniell cell, electrons flow from
 - a) Cu to Zn

- b) Zn to Cu
- c) Both directions
- d) None
- 28. Salt bridge is used to
 - a) Maintain electrical neutrality
 - b) Prevent charge accumulation
 - c) Complete the circuit
 - d) All of these
- 29. In salt bridge, ions move due to
 - a) Diffusion
 - b) Osmosis
 - c) Migration
 - d) Both a and c
- 30. Cell potential is measured in
 - a) Ampere
 - b) Volt
 - c) Ohm
 - d) Joule
- 31. Cell potential (E°cell) =
 - a) E°cathode + E°anode
 - b) E°cathode E°anode
 - c) E°anode E°cathode
 - d) None
- 32. If E°cell is positive, the reaction is
 - a) Spontaneous
 - b) Non-spontaneous
 - c) Equilibrium
 - d) None
- 33. If E°cell is negative, the reaction is
 - a) Spontaneous
 - b) Non-spontaneous
 - c) Both
 - d) None
- 34. The standard hydrogen electrode potential is
 - a) +1 V
 - b) 0 V
 - c) -1 V
 - d) +0.5 V
- 35. The cell notation for Daniell cell is
 - a) $Cu|Cu^{2+}||Zn^{2+}|Zn$
 - b) Zn|Zn²⁺||Cu²⁺|Cu
 - c) $Cu^{2+}|Cu||Zn^{2+}|Zn$
 - d) None
- 36. The function of salt bridge is to
 - a) Allow electron flow

- b) Maintain ionic balance
- c) Prevent leakage
- d) Provide current
- 37. The Nernst equation relates
 - a) Ecell with concentration
 - b) Conductivity with temperature
 - c) Potential with time
 - d) None
- 38. Nernst equation is given by
 - a) $E = E^{\circ} (RT/nF) \ln Q$
 - b) $E = E^{\circ} + (RT/nF) \ln Q$
 - c) $E = E^{\circ} + (nF/RT) \ln Q$
 - d) $E = E^{\circ} nF/RT$
- 39. In Nernst equation, F represents
 - a) Faraday constant
 - b) Force
 - c) Frequency
 - d) Free energy
- 40. Faraday constant (F) equals
 - a) 96500 C mol⁻¹
 - b) 96500 J mol⁻¹
 - c) 1.6×10^{-19} C
 - d) 6.023×10^{23}
- 41. When concentration of products increases, Ecell
 - a) Increases
 - b) Decreases
 - c) Remains constant
 - d) Doubles
- 42. When concentration of reactants increases, Ecell
 - a) Increases
 - b) Decreases
 - c) Unchanged
 - d) Doubles
- 43. ΔG° and E°cell are related by
 - a) ΔG° = nFE $^{\circ}$ cell
 - b) $\Delta G^{\circ} = -nFE^{\circ}cell$
 - c) $\Delta G^{\circ} = RT \ln K$
 - d) $\Delta G^{\circ} = -RT \ln K$
- 44. If ΔG° is negative, E°cell is
 - a) Positive
 - b) Negative
 - c) Zero
 - d) None
- 45. The potential of the hydrogen electrode depends on
 - a) H⁺ ion concentration

- b) Pressure of H2 gas
- c) Temperature
- d) All of these
- 46. Which of the following is not a redox reaction?
 - a) $H_2 + Cl_2 \rightarrow 2HCl$
 - b) $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$
 - c) $H_2O + H_2SO_4 \rightarrow H_3O^+ + HSO_4^-$
 - d) 2Na + Cl₂ → 2NaCl
- 47. Cell reaction in Daniell cell is
 - a) $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$
 - b) $Cu + Zn^{2+} \rightarrow Cu^{2+} + Zn$
 - c) $Zn^{2+} + Cu^{2+} \rightarrow Zn + Cu$
 - d) None
- 48. Which type of reaction occurs in electrochemical cell?
 - a) Redox
 - b) Precipitation
 - c) Neutralisation
 - d) None
- 49. EMF of a cell depends on
 - a) Nature of reactants
 - b) Temperature
 - c) Concentration of ions
 - d) All of these
- 50. The cell reaction is spontaneous if
 - a) Ecell > 0
 - b) Ecell < 0
 - c) Ecell = 0
 - d) Ecell is undefined

Answers – SET 3

1-c 2-b 3-c 4-b 5-b 6-b 7-c 8-c 9-b 10-b 11-a 12-b 13-b 14-a 15-a 16-b 17-a 18-a 19-a 20-a 21-b 22-a 23-b 24-b 25-a 26-b 27-b 28-d 29-d 30-b 31-b 32-a 33-b 34-b 35-b 36-b 37-a 38-a 39-a 40-a 41-b 42-a 43-b 44-a 45-d 46-c 47-a 48-a 49-d 50-a