SET 4 – GRAVITATION

(a) $6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

(b) 9.8 N/kg

1. The universal law of gravitation was proposed by: (a) Newton (b) Cavendish (c) Kepler (d) Einstein
2. Gravitational force between two masses varies directly with: (a) product of their masses (b) sum of their masses (c) difference of their masses (d) square of their masses
3. Gravitational force between two masses varies inversely with: (a) square of distance (b) distance (c) cube of distance (d) square of their product
4. The dimensional formula of G is: (a) [M ⁻¹ L ³ T ⁻²] (b) [ML ² T ⁻²] (c) [MLT ⁻²] (d) [M ⁻² L ³ T ⁻²]
5. SI unit of G is: (a) N·m²/kg² (b) N/kg² (c) m²/kg² (d) N·m/kg
6. The value of G is:

(c) 3 × 10 ⁸ m/s (d) 1.6 × 10 ⁻¹⁹ C	
7. The value of G is:	
(a) constant everywhere	
(b) depends on location	
(c) depends on medium	
(d) depends on mass	
8. Gravitational force is:	
(a) always attractive	
(b) always repulsive	
(c) zero	
(d) both attractive and repulsive	
9. The value of acceleration due to gravity at (a) maximum(b) minimum(c) zero(d) equal to that at equator	at poles is:
10. The value of acceleration due to gravity	at Earth's centre is:
(a) zero	
(b) maximum	
(c) infinite	
(d) 9.8 m/s ²	
11. The value of g on Moon is about:	
(a) 1/6th of Earth's	
(b) 6 times Earth's	
(c) 1/3rd of Earth's	
(d) equal to Earth's	
12. Gravitational field intensity is defined as	:

(a) force per unit mass(b) force per unit volume

(c) mass per unit force(d) acceleration per unit time	
13. Gravitational field intensity near Earth's surface in	s:
(a) 9.8 N/kg	
(b) 9.8 m/s	
(c) 1 N/kg	
(d) 10 kg/N	
14. The potential at infinity is taken as:	
(a) zero	
(b) minimum	
(c) maximum	
(d) negative	
15. Gravitational potential energy between two bodies	es is:
(a) −Gm₁m₂/r	
(b) Gm₁m₂r	
(c) Gm ₁ m ₂ /r ²	
(d) −Gm₁m₂r²	
16. Kepler's first law is the law of:	
(a) elliptical orbits	
(b) areas	
(c) gravitation	
(d) attraction	
17. Kepler's second law states that:	
(a) Equal areas are swept in equal time intervals	
(b) T ² ∝ R ³	
(c) $F \propto 1/r^2$	
(d) F = ma	
40 Kanlada third law since relative to the	
18. Kepler's third law gives relation between:	

(a) T² and R³ (b) T and R²

(c) F and M (d) V and M
19. The gravitational potential energy is always:
(a) negative
(b) positive
(c) zero
(d) infinite
20. For a satellite of mass m at height h, potential energy is:
(a) −GMm/(R+h)
(b) GMm/(R+h)
(c) GMmR/h
(d) −GMmR/h²
21. The escape velocity is given by:
(a) √(2GM/R)
(b) √(GM/R)
(c) √(GM/2R)
(d) √(GR/M)
22. The escape velocity from Earth's surface is approximately:
(a) 11.2 km/s
(b) 9.8 km/s
(c) 7.9 km/s
(d) 8.2 km/s
23. The escape velocity depends on:
(a) radius and mass of the planet
(b) mass of object
(c) shape of object
(d) atmosphere
24. The ratio of escape velocity to orbital velocity is:
(a) √2

(b) 2

(c) 1 (d) ½	
25. The total energy of a satellite in circular orbit is: (a) −GMm/2R	
(b) GMm/R	
(c) GMm/2R	
(d) -GMm/R	
26. The kinetic energy of a satellite in circular orbit is:	
(a) GMm/2R	
(b) -GMm/2R	
(c) GMm/R	
(d) −GMm/R	
27. The potential energy of a satellite in circular orbit is: (a) -GMm/R (b) GMm/R (c) -GMm/2R (d) GMm/2R	
28. The time period of a satellite is related to its orbital radius by:	
(a) $T^2 \propto R^3$	
(b) $T^2 \propto R^2$	
(c) $T \propto R^2$	
(d) $T^3 \propto R^2$	
29. The gravitational potential decreases with:	
(a) increase in distance	
(b) decrease in distance(c) increase in mass	
(d) none	
(a) none	
30. The gravitational field is a:	
(a) conservative field	

(b) non-conservative field

(c) electric field (d) mechanical field	
31. A geostationary satellite revolves:	
(a) from west to east	
(b) from east to west	
(c) perpendicular to equator	
(d) through poles	
32. A geostationary satellite has a time period of:	
(a) 24 hours	
(b) 12 hours	
(c) 6 hours	
(d) 48 hours	
(a) 36,000 km (b) 3,600 km (c) 42,000 km (d) 64,000 km	
34. The orbital velocity of a satellite close to Earth	s:
(a) 7.9 km/s	
(b) 9.8 km/s	
(c) 10 km/s	
(d) 11.2 km/s	
35. The energy required to launch a satellite deper	ds on:
(a) mass and height of orbit	
(b) only mass	
(c) only height	
(d) none	
36. The gravitational potential at infinity is: (a) zero	
(a) 2010	

(b) positive

c) negative d) infinite
7. The weight of a body at the equator is:
a) less than at poles
b) greater than at poles
c) equal to poles d) zero
u) 2610
8. Weightlessness occurs when:
a) object is in free fall
b) object is at rest
c) object is stationary
d) g is maximum
9. The value of a decrease with:
9. The value of g decreases with: a) height, depth, and rotation
b) only height
c) only depth
d) only rotation
0. The gravitational field intensity at a distance r from mass M is: a) GM/r² b) -GM/r² c) GM/r d) -GM/r³ 1. The potential energy of a satellite is: a) twice its total energy
b) equal to total energy
c) half of total energy
d) negative of total energy
2. Gravitational field intensity is: a) vector quantity

(b) scalar quantity

(c) tensor (d) none
43. Gravitational potential is:
(a) scalar quantity
(b) vector quantity
(c) tensor quantity
(d) none
44. The gravitational constant G is:
(a) same everywhere
(b) changes with height
(c) changes with mass
(d) depends on gravity
45. The value of g at height h << R is:
(a) g(1 – 2h/R)
(b) $g(1 - h/R)$
(c) $g(1 + h/R)$
(d) $g(1 + 2h/R)$
46. The escape velocity from the Moon is:
(a) 2.4 km/s
(b) 7.9 km/s
(c) 11.2 km/s
(d) 8.2 km/s
47. The gravitational potential energy is zero when:
(a) two bodies are infinitely apart
(b) two bodies touch
(c) at finite separation
(d) inside Earth
48. If distance between two bodies is tripled, gravitational force becomes:

(a) 1/9th(b) one-third

- (c) nine times
- (d) one-ninth
- **49.** The total mechanical energy of a satellite in circular orbit is:
- (a) negative
- (b) positive
- (c) zero
- (d) infinite
- **50.** Gravitational field lines never:
- (a) intersect
- (b) cross twice
- (c) start from infinity
- (d) bend

Answers – SET 4

- 1 (a) 2 (a) 3 (a) 4 (a) 5 (a) 6 (a) 7 (a) 8 (a) 9 (a) 10 (a)
- 11 (a) 12 (a) 13 (a) 14 (a) 15 (a) 16 (a) 17 (a) 18 (a) 19 (a) 20 (a)
- 21 (a) 22 (a) 23 (a) 24 (a) 25 (a) 26 (a) 27 (a) 28 (a) 29 (a) 30 (a)
- 31 (a) 32 (a) 33 (a) 34 (a) 35 (a) 36 (a) 37 (a) 38 (a) 39 (a) 40 (b)
- 41 (a) 42 (a) 43 (a) 44 (a) 45 (a) 46 (a) 47 (a) 48 (a) 49 (a) 50 (a)