

वस्तुनिष्ठ प्रश्न

Q1. The magnetic lines of force inside a bar magnet:

- a) do not exist
- b) depends on area of cross-section of bar magnet
- c) are from N-pole to S-pole of the magnet
- d) are from S-pole to N-pole of the magnet.

Ans: (d)

Q1. एक छड़ चुम्बक के अंदर चुम्बकीय बल रेखाएँ:

- a) मौजूद नहीं होती हैं
- b) दंड चुम्बक के अनुप्रस्थ काट के क्षेत्रफल पर निर्भर करता हैं
- c) चुम्बक के N-ध्रुव से S-ध्रुव तक होते हैं
- d) चुम्बक के S-ध्रुव से N-ध्रुव तक होते हैं।

उत्तर- (d)

Q2. A magnetic dipole moment is a vector quantity directed from:

- a) S to N
- b) N to S
- c) E to W
- d) W to E

Ans: (a)

Q2. चुम्बकीय द्विध्रुव आधूर्ण एक सदिश राशि है जिसकी दिशा होती है:

- a) दक्षिण से उत्तर की ओर
- b) उत्तर से दक्षिण की ओर
- c) पूर्व से पश्चिम की ओर
- d) पश्चिम से पूर्व की ओर

उत्तर- (a)

Q3. A magnetic needle is kept in a non-uniform magnetic field. It experiences

- a) a torque but not a force.
- b) Neither a force nor a torque.
- c) a force and a torque.
- d) a force but not a torque.

Ans: (c)

Q3. एक चुम्बकीय सूई को असमान चुम्बकीय क्षेत्र में रखा गया है। यह अनुभव करता है

- a) एक बल आधूर्ण लेकिन बल नहीं।
- b) न तो कोई बल और न ही कोई बल आधूर्ण।
- c) एक बल और एक बल आधूर्ण।
- d) एक बल लेकिन एक बल आधूर्ण नहीं।

उत्तर- (c)

Q4. The angle of dip at poles is:

- a) 0°
- b) 90°

- c) 45°
- d) 180°

Ans: (b)

Q4. ध्रुव पर नती अथवा नमन कोण का मान कितना होता है?

- a) 0°
- b) 90°
- c) 45°
- d) 180°

उत्तर- (b)

Q5. Which of the following materials is the most suitable for making a permanent magnet?

- a) Soft Iron
- b) Nickel
- c) Copper
- d) Steel

Ans: (d)

Q5. स्थायी चुम्बक बनाने के लिए निम्नलिखित में से कौन-सा पदार्थ सर्वाधिक उपयुक्त है?

- a) सॉफ्ट आयरन
- b) निकेल
- c) कॉपर
- d) स्टील

उत्तर- (d)

Q6. For which of the following is magnetic susceptibility negative?

- a) Paramagnetic and Ferromagnetic materials
- b) Paramagnetic Materials only
- c) Ferromagnetic Materials only
- d) Diamagnetic Materials

Ans: (d)

Q6. निम्नलिखित में से किसके लिए चुम्बकीय सुग्राहिता(magnetic susceptibility) ऋणात्मक है?

- a) अनुचुम्बकीय और लौह चुम्बकीय पदार्थ
- b) केवल अनुचुम्बकीय पदार्थ
- c) लौह चुम्बकीय पदार्थ
- d) प्रतिचुम्बकीय पदार्थ

उत्तर- (d)

Q7. A sensitive magnetic field instrument can be effectively shielded from the external magnetic field by placing it inside which of the following materials?

- a) Plastic Material
- b) Wood
- c) Soft Iron of high permeability
- d) A metal of high conductivity

Ans: (c)

Q7. एक संवेदनशील चुम्बकीय क्षेत्र उपकरण को निम्नलिखित में से किस सामग्री के अंदर रखकर बाहरी चुम्बकीय क्षेत्र से प्रभावी रूप से परिरक्षित किया जा सकता है?

a) प्लास्टिक सामग्री
b) लकड़ी
c) उच्च पारगम्यता का नरम लोहा
d) उच्च चालकता वाली धातु

उत्तर- (c)

Q8. What happens to the magnetic moment if a hole is made at the centre of a bar magnet?

a) Decreases b) Increases
c) No change d) None of the above

Ans: (c)

Q8. यदि छड़ चुम्बक के केंद्र में छेद किया जाए तो चुम्बकीय आघूर्ण का क्या होगा?

a) घटता
b) बढ़ता है
c) कोई परिवर्तन नहीं होता है
d) उपरोक्त में से कोई नहीं

उत्तर- (c)

Q9. Three needles N_1 , N_2 and N_3 are made of a ferromagnetic, a paramagnetic and a diamagnetic substance respectively. A magnet, when brought close to them, will

a) attract N_1 strongly, but repel weakly.
b) attract all three of them.
c) attract N_1 and N_2 strongly but repel N_3 .
d) attract N_1 strongly, N_2 weakly and repel N_3 weakly.

Ans: (d)

Q9. तीन सुइयां N_1 , N_2 और N_3 क्रमशः लौह चुम्बकीय पदार्थ, अनुचुम्बकीय पदार्थ और प्रतिचुम्बकीय पदार्थ पदार्थ से बनी हैं। जब एक चुम्बक को उनके करोंब लाया जाता है तो

(a) N_1 को दृढ़ता से आकर्षित करेगा पर N_2 और N_3 को कमजोर रूप से पीछे हटा देगा।
b) उन तीनों को आकर्षित करेगा।
c) N_1 और N_2 को मजबूती से आकर्षित करेगा है लेकिन N_3 को पीछे हटा देगा।
d) N_1 को मजबूती से आकर्षित करता है, N_2 को कमजोर रूप से से आकर्षित करता है और N_3 को कमजोर रूप से पीछे हटा देगा।

उत्तर- (d)

Q10. What is the work done by the magnet of moment M if it is rotated through 360° in magnetic field B ?

a) $2MB$ b) MB
c) $2\pi BH$ d) Zero

Ans: (d)

Q10. आघूर्ण M के चुम्बक द्वारा किया गया कार्य क्या होगा यदि इसे चुम्बकीय क्षेत्र B में 360° से घुमा दिया जाय?

a) $2MB$ b) MB
c) $2\pi BH$ d) शून्य

उत्तर- (d)

Q11. What is the net magnetic moment of an atom of a diamagnetic material?

a) Greater than 1
b) Less than 1 but greater than zero
c) Less than zero but greater than -1
d) Zero

Ans: (d)

Q11. किसी प्रतिचुम्बकीय पदार्थ के परमाणु का शुद्ध चुम्बकीय आघूर्ण क्या होता है?

a) 1 से बड़ा
b) 1 से कम लेकिन शून्य से अधिक
c) शून्य से कम लेकिन -1 से अधिक
d) शून्य

उत्तर- (d)

Q12. What is the S.I. unit of magnetic susceptibility?

a) Am^{-1} b) TA^{-1}
c) TmA^{-1} d) No units

Ans: (d)

Q12. चुम्बकीय सुप्राहिता की SI इकाई क्या है?

a) Am^{-1} b) TAm^{-1}
c) TmA^{-1} d) No units

उत्तर- (d)

Q13. Curie temperature is the temperature above which

a) a ferromagnetic material becomes paramagnetic.
b) a ferromagnetic material becomes diamagnetic.
c) a paramagnetic material becomes diamagnetic.
d) a paramagnetic material becomes ferromagnetic.

Ans: (a)

Q13. क्यूरी तापमान वह तापमान है जिसके ऊपर

a) एक लौहचुम्बकीय पदार्थ अनुचुम्बकीय पदार्थ बन जाता है।
b) एक लौहचुम्बकीय पदार्थ प्रतिचुम्बकीय बन जाता है।
c) एक अनुचुम्बकीय पदार्थ प्रतिचुम्बकीय बन जाता है।
d) एक अनुचुम्बकीय पदार्थ लौहचुम्बकीय बन जाता है।

उत्तर- (a)

Q14. What is the value of angle of dip at the magnetic equator?

a) 0° b) 90°
c) 45° d) Nearly 30°

Ans: (a)

Q14. चुम्बकीय भूमध्य रेखा पर नती अथवा नमन कोण का मान कितना होता है?

a) 0° b) 90°
c) 45° d) लगभग 30°

उत्तर- (a)

Q15. What is the angle of dip at a place where the horizontal component of earth's magnetic field is equal to the vertical component?

a) 0° b) 30°
 c) 45° d) 90°

Ans: (c)

Q15. किसी स्थान पर नमन कोण क्या होता है जहाँ पृथ्वी के चुम्बकीय क्षेत्र का क्षेत्रिज घटक ऊर्ध्वाधर घटक के बराबर होता है?

a) 0° b) 30°
 c) 45° d) 90°

उत्तर- (C)

Q16. Which of the following is a paramagnetic substance?

a) Iron b) Aluminium
 c) Nickel d) Hydrogen.

Ans: (b)

Q16. निम्न में से कौन अनुचुम्बकीय पदार्थ है?

a) लौह b) एल्यूमीनियम
 c) निक्कल d) हाइड्रोजन

उत्तर- (b)

Q17. The most suitable material for making transformer core is -

a) Steel b) Nickel
 c) Copper d) Soft iron

Ans: (d)

Q17. ट्रांसफर कोर को बनाने के लिए सबसे उपयुक्त पदार्थ -

a) स्टील b) निक्कल (Nickel)
 c) कॉपर d) नरम लोहा

Ans: (d)

Q18. At room temperature Nickel (Ni) shows Ferromagnetic properties. If the temperature is increased above the Curie temperature, it will show :

a) paramagnetism
 b) Ferromagnetism
 c) no magnetising property
 d) diamagnetism.

Ans: (a)

Q18. कमरे के तापमान पर निक्कल (Ni) लौहचुम्बकीय गुण दर्शाता है। यदि ताप को क्षूरी ताप से अधिक बढ़ा दिया जाए तब यह दिखाएगा :

(a) अनुचुम्बकत्व
 (b) लौह चुम्बकत्व
 (c) कोई भी चुम्बकत्व गुण नहीं
 (d) प्रतिचुम्बकत्व।

उत्तर- (a)

Q19. A small piece of a substance (which is not magnetic) is brought near a strong magnet. If a piece of matter is repelled by a magnet, then what is this matter?

a) paramagnetic b) diamagnetic
 c) ferromagnetic d) none of these

Ans: (b)

Q19. एक पदार्थ के छोटे टुकड़े को (जो चुम्बकीय नहीं है) शक्तिशाली चुम्बक के पास लाया जाता है। यदि पदार्थ का टुकड़ा चुम्बक से प्रतिरूपित होता है तो यह पदार्थ क्या है?

a) अनुचुम्बकीय b) प्रति चुम्बकीय
 c) लौह चुम्बकीय d) इनमें से कोई भी नहीं।

उत्तर- (b)

Q20. The potential energy of a magnetic dipole is :

a) $U = \vec{m} \cdot \vec{B}$ b) $U = \vec{m} \times \vec{B}$
 c) $U = -\vec{m} \cdot \vec{B}$ d) $U = -\vec{m} + \vec{B}$

Ans: (c)

Q20. चुम्बकीय द्विधुत की स्थितिज ऊर्जा होती है:

a) $U = \vec{m} \cdot \vec{B}$ b) $U = \vec{m} \times \vec{B}$
 c) $U = -\vec{m} \cdot \vec{B}$ d) $U = -\vec{m} + \vec{B}$

उत्तर- (c)

Q21. The relation between magnetic field, dipole moment and torque is:

a) $\vec{\tau} = \vec{m} \cdot \vec{B}$ b) $\vec{\tau} = \vec{m} \times \vec{B}$
 c) $\vec{\tau} = \vec{m} + \vec{B}$ d) $\vec{m} = \vec{\tau} \cdot \vec{B}$

Ans: (b)

Q21. चुम्बकीय क्षेत्र, द्विधुत आधूर्ण तथा बल आधूर्ण का सम्बन्ध होता है:

a) $\vec{\tau} = \vec{m} \cdot \vec{B}$ b) $\vec{\tau} = \vec{m} \times \vec{B}$
 c) $\vec{\tau} = \vec{m} + \vec{B}$ d) $\vec{m} = \vec{\tau} \cdot \vec{B}$

उत्तर- (b)

Q22. The dimensions of the magnetic dipole moment are:

a) $[M^0 LT^0 A]$ b) $[M^0 L^2 T^0 A]$
 c) $[M^0 LT^{-1} A]$ d) $[M^0 L^2 T^{-1} A]$

Ans: (b)

Q22. चुम्बकीय द्विधुत आधूर्ण की विमाएँ होती हैं:

a) $[M^0 LT^0 A]$ b) $[M^0 L^2 T^0 A]$
 c) $[M^0 LT^{-1} A]$ d) $[M^0 L^2 T^{-1} A]$

उत्तर- (b)

Subjective Question (विषयनिष्ठ प्रश्न)

Q1. What is a magnet?

Ans: A magnet is a substance that can attract magnetised substances such as iron and remains in the north-south direction when freely suspended in a linear fashion.

Q1. चुम्बक क्या है?

उत्तर: चुम्बक एक पदार्थ है जो लोहे जैसे चुम्बकीय पदार्थों को आकर्षित कर सकता है तथा मुक्त रूप से रेखीय आकृति में लटकाए जाने

पर उत्तर-दक्षिण दिशा में रहता है।

Q2. What is an artificial magnet?

Ans: Man-made magnets are known as artificial magnets.

Q2. कृत्रिम चुम्बक क्या है ?

उत्तर: मानव निर्मित चुम्बक कृत्रिम चुम्बक के रूप में जाने जाते हैं।

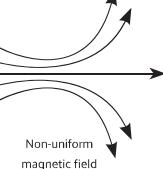
Q3. Give two ways to demagnetize a magnet.

Ans: (i) By heating it (ii) By dropping it repeatedly on the ground.

Q3. किसी चुम्बक को विचुम्बकित करने के दो उपाय बताइये।

उत्तर: (i) इसे गर्म करके (ii) इसे बार-बार धरातल पर गिराने से।

Q4. What is the reliable test of magnetism?

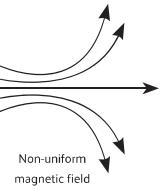

Ans: Repulsion is the real test of magnetism.

Q4. चुम्बकत्व का विश्वसनीय परीक्षण क्या है ?

उत्तर: प्रतिकर्षण चुम्बकत्व का वास्तविक परीक्षण है।

Q5. What are magnetic fields? What is the difference between uniform and non-uniform magnetic fields? Explain with the help of a diagram.

Ans: Magnetic field: Magnetic field is the space around a magnet (or current carrying conductor) within which its effect can be experienced by a small magnet.

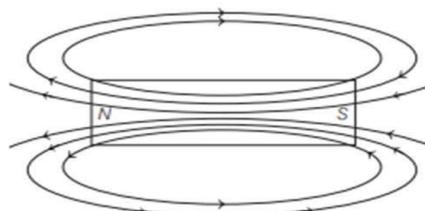


Uniform field	magnetic Non uniform magnetic field
1. If the magnetic field is the same at all points in a region, then it is called a uniform magnetic field. Example: Earth's magnetic field and magnetic field inside a long solenoid.	1. If the magnetic field is different at different points in a region, then it is called a non-uniform magnetic field. Example- The magnetic field due to a magnet is non-uniform.
2. In a uniform magnetic field, the magnitude and direction of the magnetic field remain the same throughout the region.	2. In a non-uniform magnetic field, the magnitude and direction of the magnetic field are different at different points.
3. Uniform magnetic field is represented by equally spaced parallel lines.	3. A non-uniform magnetic field is represented by converging, diverging or unequally spaced lines.
Uniform magnetic field	Non-uniform magnetic field

Q5. चुम्बकीय क्षेत्र क्या हैं? समरूप तथा असमरूप चुम्बकीय क्षेत्रों के मध्य क्या अन्तर है? चित्र की सहायता से समझाइये।

उत्तर: चुम्बकीय क्षेत्र : (Magnetic Field)

चुम्बकीय क्षेत्र किसी चुम्बक (अथवा धारावाही चालक) के चारों ओर का वह स्थान है जिसके भीतर इसका प्रभाव किसी छोटे

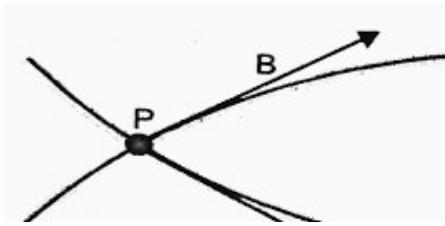
चुम्बक के द्वारा महसूस किया जा सकता है।

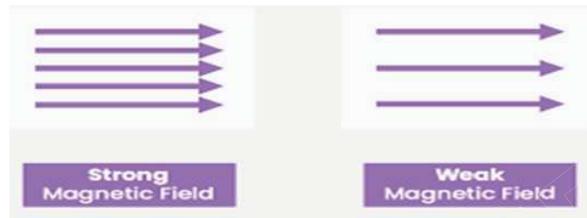

समरूप चुम्बकीय क्षेत्र (uniform magnetic field)	असमरूप चुम्बकीय क्षेत्र (Non uniform magnetic field)
1. यदि किसी क्षेत्र में सभी बिन्दुओं पर चुम्बकीय सामर्थ्य समान हो तो यह समरूप चुम्बकीय क्षेत्र कहलाता है। उदाहरण:- पृथ्वी का चुम्बकीय क्षेत्र तथा लम्बी परिनालिका के भीतर चुम्बकीय क्षेत्र।	1. यदि किसी क्षेत्र में भिन्न बिन्दुओं पर चुम्बकीय सामर्थ्य भिन्न हो तो यह असमरूप चुम्बकीय क्षेत्र कहलाता है। उदाहरण- एक चुम्बक के कारण चुम्बकीय क्षेत्र असमरूप होता है।
2. समरूप चुम्बकीय क्षेत्र में चुम्बकीय क्षेत्र का परिमाण तथा दिशा सम्पूर्ण क्षेत्र में समान बने रहते हैं।	2. असमरूप चुम्बकीय क्षेत्र में, चुम्बकीय क्षेत्र का परिमाण तथा दिशा भिन्न बिन्दुओं पर अलग होती है।
3. समरूप चुम्बकीय क्षेत्र को समान दूरी वाली समानान्तर रेखाओं द्वारा प्रदर्शित किया जाता है।	3. असमान चुम्बकीय क्षेत्र को अभिसारित, अपसारित अथवा असमान दूरी वाली रेखाओं से प्रदर्शित किया जाता है।

Q6. What are magnetic field lines? Give their main characteristics.

Ans: Magnetic field lines: The magnetic field is represented by a set of lines or curves which are called magnetic field lines. These lines are not real, but they are drawn to simply visualise the magnetic field.

The main properties of magnetic field lines are as follows:

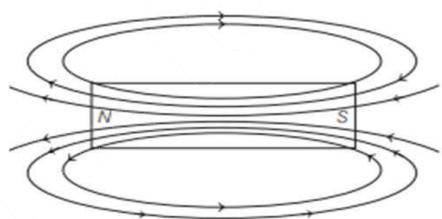

(a) Magnetic field lines form continuous and closed curves. It moves from north pole to south pole outside the magnet while it moves from south pole to north pole inside the magnet.


(b) The tangent drawn at any point to the magnetic field line shows the direction of the magnetic field B (flux density, magnetic field or magnetic field strength) at that point.

(c) Two magnetic field lines do not intersect each other. If they cross each other then there will be two directions of magnetic field at the point of

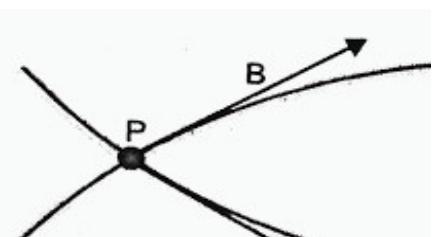
intersection which is impossible.

(d) Magnetic field lines that are far from each other represent a weak magnetic field while magnetic field lines that are close to each other represent a strong magnetic field.


(e) Although magnetic lines are not real, yet they represent the magnetic field which is real.

Q6. चुम्बकीय क्षेत्र रेखाएँ क्या हैं? उनकी प्रमुख विशेषताएँ दीजिए।

उत्तर: चुम्बकीय क्षेत्र रेखाएँ (Magnetic field Lines): चुम्बकीय क्षेत्र को विकृत रेखाओं अथवा रेखाओं के समूहों द्वारा प्रदर्शित किया जाता है जिन्हें चुम्बकीय क्षेत्र रेखाएँ कहा जाता जाता है। ये रेखाएँ वास्तविक नहीं होती अपितु इन्हें चुम्बकीय क्षेत्र को सरल रूप में प्रदर्शित करने हेतु खींचा जाता है।

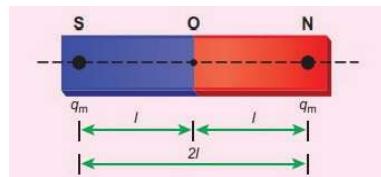

चुम्बकीय क्षेत्र रेखाओं के प्रमुख गुण निम्न प्रकार हैं:

(a) चुम्बकीय क्षेत्र रेखाएँ सतत तथा बन्द वक्रों का निर्माण करती हैं। ये चुम्बक के बाहर उत्तरी ध्रुव से दक्षिणी ध्रुव की ओर गति करती है जबकि चुम्बक के भीतर दक्षिणी ध्रुव से उत्तरी ध्रुव की ओर गति करती है।

(b) चुम्बकीय क्षेत्र रेखा के किसी बिन्दु पर खींची गई स्पर्श रेखा उस बिन्दु पर चुम्बकीय क्षेत्र B (फ्लाक्स घनत्व, चुम्बकीय क्षेत्र अथवा चुम्बकीय क्षेत्र का सामर्थ्य) की दिशा को प्रदर्शित करती है।

(c) दो चुम्बकीय क्षेत्र रेखाएँ आपस में एक-दूसरे को नहीं काटती हैं। यदि वे एक-दूसरे को काटती हैं तो वहाँ चुम्बकीय क्षेत्र की दो दिशाएँ प्राप्त होती हैं जो कि असम्भव हैं।

(d) एक दूसरे से दूर चुम्बकीय क्षेत्र रेखाएँ दुर्बल चुम्बकीय क्षेत्र को प्रदर्शित करती हैं जबकि एक दूसरे से निकट चुम्बकीय क्षेत्र रेखाएँ दुर्बल चुम्बकीय क्षेत्र को प्रदर्शित करती हैं।

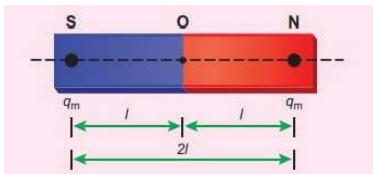

(e) यद्यपि चुम्बकीय रेखाएँ वास्तविक नहीं होती हैं फिर भी ये चुम्बकीय क्षेत्र को प्रदर्शित करती हैं जो कि वास्तविक होता है।

Q7. What is magnetic dipole and magnetic moment?

Ans: A magnetic dipole consists of a pair of magnetic poles of equal and opposite strengths separated by a small distance. Examples of magnetic dipole are: magnetic needle, bar magnet, current carrying solenoid, current loop etc.

Magnetic dipole moment: The magnetic dipole moment (m) is defined as the product of the pole strength of either pole and the distance between the magnetic poles.

The distance between the two poles is called the magnetic length and is taken as $2l$. Let q_m be the pole strength of each pole, then magnetic dipole moment is given as $m = q_m \times 2l$


The magnetic dipole moment is a vector, so it can be written as $\vec{m} = q(\vec{2l})$

where $2l$ is the magnetic length vector directed from the south to the north pole. Thus the direction of magnetic dipole moment is from south to north.

Q7. चुम्बकीय द्विध्रुव तथा चुम्बकीय आघूर्ण क्या हैं?

उत्तर: चुम्बकीय द्विध्रुव, अल्प दूरी पर स्थित समान तथा विपरीत सामर्थ्य के चुम्बकीय ध्रुवों द्वारा बनाया जाता है। चुम्बकीय द्विध्रुव के उदाहरण हैं: चुम्बकीय सूई, छड़ चुम्बक, धारावाही परिनालिका, धारालूप आदि।

चुम्बकीय आघूर्ण (Magnetic dipole moment): चुम्बकीय द्विध्रुव आघूर्ण (m) को किसी एक ध्रुव की ध्रुव सामर्थ्य तथा ध्रुवों के मध्य दूरी के गुणनफल से परिभाषित किया जाता है। दो ध्रुवों के मध्य की दूरी को चुम्बकीय लम्बाई कहते हैं तथा इसे $2l$ लिया जाता है। प्रत्येक ध्रुव की चुम्बकीय सामर्थ्य को q_m be the pole strength of each pole, then magnetic moment हुए चुम्बकीय द्विध्रुव आघूर्ण इस प्रकार दिया जाता है। $m = q_m \times 2l$

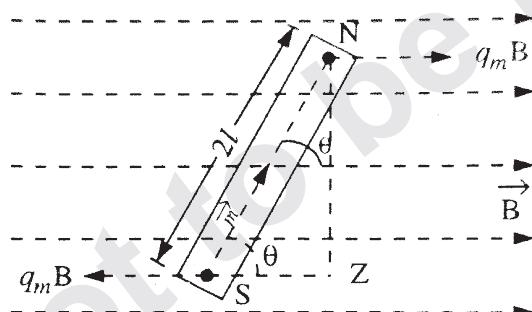
चुम्बकीय द्विध्रुव आधूर्ण एक सदिश है अतः इसे इस प्रकार लिखा जा सकता है। $\vec{m} = q(2l)$

जहाँ $2l$ दक्षिणी से उत्तरी ध्रुव की ओर निर्देशित सदिश है। इस प्रकार चुम्बकीय द्विध्रुव आधूर्ण की दिशा दक्षिण से उत्तर की ओर है।

Q8. Derive the relation for the torque on a dipole (bar magnet) in a uniform magnetic field.

Ans: If a magnetic dipole (bar magnet) is placed in a uniform magnetic field, then the north and south poles of the magnet experience equal and opposite forces.

Let the magnetic length of the magnet = $2l$


Pole strength of each pole = q_m

Strength of Magnetic field = \vec{B}

Angle between \vec{B} and \vec{m} = θ

Then, force acting on north pole $\vec{F}_N = q_m \vec{B}$

Force acting on South Pole $\vec{F}_s = -q_m \vec{B}$

These forces constitute a couple which tends to rotate the magnet in the direction of \vec{B} ; thus the magnet experiences a torque.

Therefore, torque acting on the bar magnet is given by,

$\tau = \text{force} \times \text{perpendicular distance between the forces}$

Or, $\tau = B \times ZN = B (SN \sin \theta) = q_m B (2l \sin \theta)$

(since in ZN , $\sin \theta = ZN/ZN$ or $ZN = SN \sin \theta$)

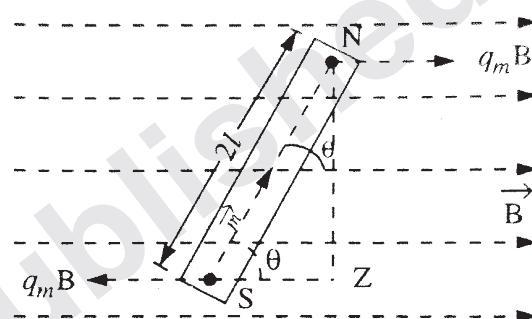
$\tau = (q_m \times 2l) B \sin \theta = mB \sin \theta$ (since $q_m \times 2l = m$)

In vector form, $\tau = \vec{m} \times \vec{B}$

Q8. एकसमान चुम्बकीय क्षेत्र में किसी द्विध्रुव (छड़ चुम्बक) पर बलआधूर्ण के लिए समवन्य व्युत्पित कीजिए।

उत्तर: यदि कोई चुम्बकीय द्विध्रुव (छड़-चुम्बक) किसी समरूप चुम्बकीय क्षेत्र में स्थित है तो चुम्बक के उत्तरी तथा दक्षिणी ध्रुव समान तथा विपरीत बल अनुभव करते हैं।

माना की चुम्बक की चुम्बकीय लम्बाई = $2l$


प्रत्येक ध्रुव की ध्रुव सामर्थ्य = q_m

चुम्बकीय क्षेत्र की सामर्थ्य = \vec{B}

\vec{B} के सापेक्ष चुम्बक की स्थिति = θ

तब, उत्तरी ध्रुव पर कार्यरत बल $\vec{F}_N = q_m \vec{B}$

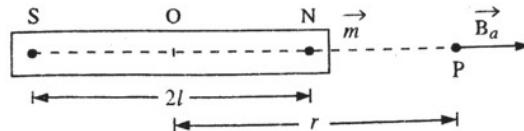
दक्षिणी ध्रुव पर कार्यरत बल $\vec{F}_s = -q_m \vec{B}$

ये बल एक युग्म का निर्माण करते हैं जिसकी प्रवृत्ति चुम्बक को B की दिशा में धूमाने की होती है; इस प्रकार चुम्बकीय बल आधूर्ण अनुभव होता है।

अतः छड़ चुम्बक पर कार्यरत बल आधूर्ण

$\tau = \text{बल} \times \text{बलों के मध्य लम्बवत् दूरी}$

या, $\tau = q_m B \times ZN = B (SN \sin \theta) = q_m B (2l \sin \theta)$


(चूंकि ZN में $\sin \theta = ZN/ZN$ या $ZN = SN \sin \theta$)

$\tau = (q_m \times 2l) B \sin \theta = mB \sin \theta$ (चूंकि $q_m \times 2l = m$)

सदिश रूप में, $\tau = \vec{m} \times \vec{B}$

Q9. Derive the relation for the intensity of the magnetic field at a point on the axial line of the magnet.

Ans: Magnetic field intensity at a point on the axial line of a bar magnet:

Let O be the centre of a bar magnet having magnetic length $2l$. Point P lies on the axial line of the bar magnet at a distance r from the centre O. The position of the point P on the axial line is also known as the end of position with respect to the magnet. The magnetic field intensity at P due to the north pole of the bar magnet B_1 will be along NP

$$\vec{B}_1 = \frac{\mu_0}{4\pi} \frac{q_m}{(r-l)^2}$$

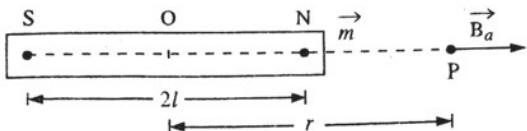
Similarly, the magnetic field intensity at point P due to the south pole of the bar magnet \vec{B}_2 will be along PS.

$$\vec{B}_2 = \frac{\mu_0}{4\pi} \frac{q_m}{(r+l)^2}$$

Therefore, the intensity of the resultant magnetic field at the point P due to the bar magnet,

$$\begin{aligned} B_a &= \frac{\mu_0}{4\pi} \frac{q_m}{(r-l)^2} - \frac{\mu_0}{4\pi} \frac{q_m}{(r+l)^2} \\ &= \frac{\mu_0}{4\pi} q_m \left[\frac{(r+l)^2 - (r-l)^2}{(r^2 - l^2)^2} \right] \\ &= \frac{\mu_0}{4\pi} q_m \left[\frac{(r+l+r-l)(r+l-r+l)}{(r^2 - l^2)^2} \right] \\ &= \frac{\mu_0}{4\pi} q_m \left[\frac{2r \times 2l}{(r^2 - l^2)^2} \right] \end{aligned}$$

since $q_m \times 2l = m$


hence $B_a = \frac{\mu_0}{4\pi} \frac{2mr}{(r^2 - l^2)^2}$ along NP

if the length of the magnet is very small, $l^2 \ll r^2$

$$B_a = \frac{\mu_0 2m}{4\pi r^3}$$

Q9. चुम्बक की अक्षीय रेखा पर किसी बिन्दु पर चुम्बकीय क्षेत्र की तीव्रता के लिए सम्बन्ध व्युत्पत्ति कीजिए।

उत्तर: किसी छड़ चुम्बक की अक्षीय रेखा पर स्थित बिन्दु पर चुम्बकीय क्षेत्र की तीव्रता:

माना की बिंदु O, 2l चुम्बकीय लम्बाई की किसी छड़ चुम्बक का केन्द्र है। केन्द्र O से अक्षीय रेखा पर कोई बिन्दु P स्थित है। अक्षीय रेखा पर P बिन्दु की स्थिति को चुम्बक के सापेक्ष अक्षीय (end on) की स्थिति के रूप में भी जाना जाता है। छड़ चुम्बक के उत्तरी ध्रुव के कारण P बिन्दु पर चुम्बकीय क्षेत्र की तीव्रता \vec{B}_1 NP के अनुदिश होगा।

$$\vec{B}_1 = \frac{\mu_0}{4\pi} \frac{q_m}{(r-l)^2}$$

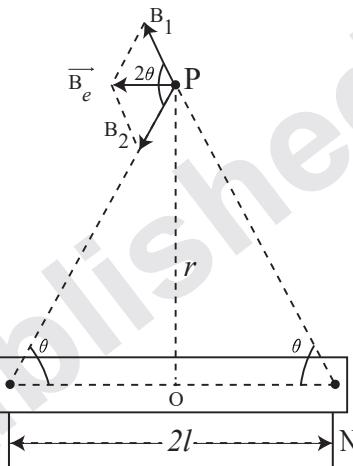
इसी प्रकार, छड़ चुम्बक के दक्षिणी ध्रुव के कारण P बिन्दु पर चुम्बकीय क्षेत्र की तीव्रता \vec{B}_2 PS के अनुदिश होगा।

$$\vec{B}_2 = \frac{\mu_0}{4\pi} \frac{q_m}{(r+l)^2}$$

अतः छड़ चुम्बक के कारण P बिन्दु पर परिणामी चुम्बकीय क्षेत्र की तीव्रता,

$$\begin{aligned} B_a &= \frac{\mu_0}{4\pi} \frac{q_m}{(r-l)^2} - \frac{\mu_0}{4\pi} \frac{q_m}{(r+l)^2} \\ &= \frac{\mu_0}{4\pi} q_m \left[\frac{(r+l)^2 - (r-l)^2}{(r^2 - l^2)^2} \right] \\ &= \frac{\mu_0}{4\pi} q_m \left[\frac{(r+l+r-l)(r+l-r+l)}{(r^2 - l^2)^2} \right] \\ &= \frac{\mu_0}{4\pi} q_m \left[\frac{2r \times 2l}{(r^2 - l^2)^2} \right] \end{aligned}$$

चूंकि $q_m \times 2l = m$


अतः $B_a = \frac{\mu_0}{4\pi} \frac{2mr}{(r^2 - l^2)^2}$ के अनुदिश

यदि चुम्बक की लम्बाई बहुत कम हो तो $l^2 \ll r^2$

$$B_a = \frac{\mu_0 2m}{4\pi r^3}$$

Q10. Derive the relation for the intensity of the magnetic field at the equatorial point of the magnet.

Ans: Magnetic field intensity at the equatorial point of a bar magnet

Let the point O be the centre of a bar magnet of magnetic length $2l$. Let the equatorial point P be at a distance r from the centre O. The position of the equatorial point P is also known as Broad-on position with respect to the magnet. The magnetic field intensity at P due to the north pole of the bar magnet \vec{B}_1 will be along NP

$$\begin{aligned} \vec{B}_1 &= \frac{\mu_0}{4\pi} \frac{m}{(r^2 + l^2)^2} \\ &= \frac{\mu_0}{4\pi} \frac{m}{(r^2 + l^2)} \text{ along NP} \end{aligned} \quad \dots \dots \dots \text{(i)}$$

Similarly, the magnetic field intensity at P due to the south pole of the bar magnet \vec{B}_2 will be along PS.

$$\vec{B}_2 = \frac{\mu_0}{4\pi} \frac{m}{(r^2 + l^2)} \text{ along PS} \quad \dots \dots \dots \text{(ii)}$$

\vec{B}_1 and \vec{B}_2 are inclined at an angle of 2θ . Therefore, the resultant of these two field intensities is given by,

$$B_\theta = \sqrt{B_1^2 + B_2^2 + 2B_1 B_2 \cos 2\theta}$$

since $\vec{B}_1 = \vec{B}_2$

$$\begin{aligned} B_\theta &= \sqrt{2B_1^2 + 2B_1^2 \cos 2\theta} \\ \text{Hence} \quad &= \sqrt{2B_1^2 (1 + \cos 2\theta)} \\ &= \sqrt{2B_1^2 \times 2 \cos^2 \theta} \\ &= 2B_1 \cos \theta \end{aligned}$$

(since $(1 + \cos 2\theta) = 2 \cos^2 \theta$)

Using equation (i), we get

$$B_e = 2 \times \frac{\mu_0}{4\pi} \frac{q_m}{(r^2 + l^2)} \cos \theta$$

From the picture,

$$\cos \theta = \frac{l}{\sqrt{r^2 + l^2}}$$

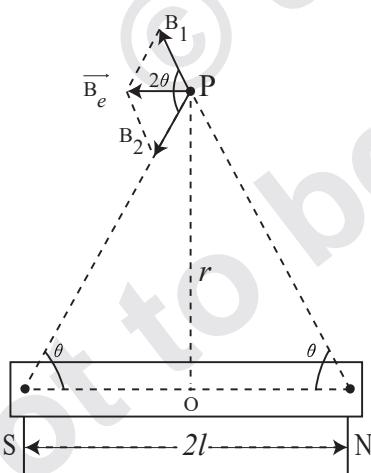
therefore

$$B_e = \frac{\mu_0}{4\pi} = \frac{q_m \times 2l}{(r^2 + l^2)^{3/2}}$$

since

$$q_m \times 2l = m$$

in


$$B_e = \frac{\mu_0}{4\pi} = \frac{m}{(r^2 + l^2)^{3/2}}$$

In case magnet is of very small, then $l^2 \ll r^2$

$$B_e = \frac{\mu_0 m}{4\pi r^3}$$

Q10. चुम्बक के भूमध्य - रेखीय बिन्दु पर चुम्बकीय क्षेत्र की तीव्रता के लिए सम्बन्ध व्युत्पत्ति कीजिए।

उत्तर: किसी छड़ चुम्बक के भूमध्य रेखीय बिन्दु पर चुम्बकीय क्षेत्र की तीव्रता:

माना की बिंदु O, 2l चुम्बकीय लम्बाई की किसी छड़ चुम्बक का केन्द्र है। माना की केन्द्र O से r दूरी पर स्थित भूमध्य-रेखीय बिन्दु P है। भूमध्य रेखीय स्थिति P बिन्दु की स्थिति को चुम्बक के सापेक्ष (Broad-on) की स्थिति के रूप में जाना जाता है। छड़ चुम्बक के उत्तरी ध्रुव के कारण P बिन्दु पर चुम्बकीय क्षेत्र की तीव्रता \vec{B}_1 NP के अनुदिश होगा।

$$\vec{B}_1 = \frac{\mu_0}{4\pi} \frac{q_m}{(r^2 + l^2)^2} \text{ NP के अनुदिश} \quad \text{.....(i)}$$

$$= \frac{\mu_0}{4\pi} \frac{m}{(r^2 + l^2)} \quad \text{NP के अनुदिश}$$

इसी प्रकार, छड़ चुम्बक के दक्षिणी ध्रुव के कारण P बिन्दु पर चुम्बकीय क्षेत्र की तीव्रता \vec{B}_2 PS के अनुदिश होगा।

$$\vec{B}_2 = \frac{\mu_0}{4\pi} \frac{m}{(r^2 + l^2)} \text{ PS के अनुदिश} \quad \text{.....(ii)}$$

तथा, 2θ कोण पर झुके हुए हैं। इसलिए दोनों क्षेत्र की तीव्रताओं का परिणामी इस प्रकार दिया जाता है,

$$B_\theta = \sqrt{B_1^2 + B_2^2 + 2B_1 B_2 \cos 2\theta}$$

चूंकि $\vec{B}_1 = \vec{B}_2$

$$B_e = \sqrt{2B_1^2 + 2B_1^2 \cos 2\theta}$$

$$\text{अतः} \quad = \sqrt{2B_1^2 (1 + \cos 2\theta)}$$

$$= \sqrt{2B_1^2 \times 2 \cos^2 \theta}$$

$$= 2B_1 \cos \theta$$

$$(\text{चूंकि } (1 + \cos 2\theta) = 2 \cos^2 \theta)$$

समीकरण (i) के प्रयोग से, हम पाते हैं।

$$B_e = 2 \times \frac{\mu_0}{4\pi} \frac{m}{(r^2 + l^2)} \cos \theta$$

चित्र से,

$$\cos \theta = \frac{l}{\sqrt{r^2 + l^2}}$$

अतः

$$B_e = \frac{\mu_0}{4\pi} = \frac{q_m \times 2l}{(r^2 + l^2)^{3/2}}$$

चूंकि

$$q_m \times 2l = m$$

अतः

$$B_e = \frac{\mu_0}{4\pi} = \frac{m}{(r^2 + l^2)^{3/2}}$$

उस परिस्थिति में जब चुम्बक की लंबाई बहुत कम हो तो $l^2 \ll r^2$

$$B_e = \frac{\mu_0 m}{4\pi r^3}$$

Q11. In a short bar magnet, what is the relation between the value of magnetic induction at a point located on the axial line of the magnet and the magnetic induction at the equatorial point located at the same distance?

Ans: In a short bar magnet, the value of magnetic induction at a point located on the axial line of the magnet is twice the value of magnetic induction obtained at the equatorial point located at the same distance and direction is opposite.

$$\vec{B}_a = -2\vec{B}_e$$

Q11. किसी छोटी छड़ चुम्बक में चुम्बक की अक्षीय रेखा पर स्थित किसी बिन्दु पर चुम्बकीय प्रेरण का मान और समान दूरी पर स्थित भूमध्य रेखीय बिन्दु पर प्राप्त चुम्बकीय प्रेरण के मध्य क्या सम्बन्ध होता है?

उत्तर: किसी छोटी छड़ चुम्बक में चुम्बक की अक्षीय रेखा पर स्थित किसी बिन्दु पर चुम्बकीय प्रेरण का मान समान दूरी पर स्थित भूमध्य रेखीय बिन्दु पर प्राप्त चुम्बकीय प्रेरण का मान दुगुना और विपरीत दिशा में होता है।

$$\vec{B}_a = -2\vec{B}_e$$

Q12. What is the basic difference between electric and magnetic fields?

Ans: A. Electric field is caused by stationary charges and magnetic field is caused by moving charges.
 B. Electric field lines are not continuous; they start at positive charges and end at negative charges but magnetic field lines are continuous.

Q12. विद्युत् तथा चुम्बकीय क्षेत्रों के मध्य आधारभूत अंतर क्या है ?

उत्तर: A. विद्युत् क्षेत्र का कारण स्थिर आवेश है, चुम्बकीय क्षेत्र गतिमान आवेश के कारण होता है।

B. विद्युत् बल रेखाएँ सतत् नहीं होती हैं ये धनावेश से शुरू होती हैं तथा क्रणावेश पर समाप्त होती हैं परन्तु चुम्बकीय बल रेखाएँ सतत् होती हैं।

Q13. Derive the relation for the potential energy of a bar magnet or magnetic dipole when it is placed in a magnetic field?

Ans: The work done in rotating a magnetic dipole (bar magnet) in a magnetic field is stored in the form of potential energy of the magnetic dipole. The potential energy of a bar magnet in a uniform magnetic field is defined as the work done in deflecting it from standard position (i.e. magnet makes 90 degree angle with the direction of field) to other position.

If a dipole of magnetic moment m is placed at an angle θ with respect to a uniform magnetic field

B. Then the torque experienced by it is given by.
 $\tau = mB \sin\theta$

If the dipole is rotated through an angle $d\theta$ then the work done is given by

$$dW = \tau d\theta = mB \sin\theta d\theta$$

The total work done in rotating the dipole from θ_1 to θ_2 position Work

$$W = \int_{\theta_1}^{\theta_2} mB \sin\theta d\theta = mB \int_{\theta_1}^{\theta_2} \sin\theta d\theta = -mB [\cos\theta_2 - \cos\theta_1]$$

Therefore by the definition of potential energy,

$$U = W = -mB (\cos\theta_2 - \cos\theta_1)$$

$$\text{or, } U = W = -mB (\cos\theta_2 - \cos 90^\circ) = -mB \cos\theta$$

$$\text{since } \theta_2 = \theta \text{ and } \theta_1 = 90^\circ$$

$$\text{In vector form, } U = -\frac{\vec{m}}{m} \cdot \frac{\vec{B}}{B}$$

Q13. किसी छड़ चुंबक या चुम्बकीय द्विधुर की स्थितिज ऊर्जा के लिए सम्बन्ध व्युत्पित कीजिए जब इस चुम्बकीय क्षेत्र में रखा जाता है ?

उत्तर: चुम्बकीय क्षेत्र में किसी चुम्बकीय द्विधुर (छड़ चुंबक) को धूमाने में किया गया कार्य चुम्बकीय द्विधुर की स्थितिज ऊर्जा के रूप में संचित हो जाता है। एक समान चुंबकीय क्षेत्र में एक छड़ चुंबक (द्विधुर) को मानक स्थिति (यानी छड़ चुंबक चुंबक की दिशा

के साथ 90 डिग्री का कोण बनाता है) से दूसरी स्थिति में विक्षेपित करने में किए गए कार्य को स्थितिज ऊर्जा रूप में परिभाषित किया जाता है।

यदि किसी द्विधुर जिसका चुम्बकीय आघूर्ण m है, को B सामर्थ्य वाले समरूप चुम्बकीय क्षेत्र के सापेक्ष θ कोण पर रखा गया है। तब इसके द्वारा अनुभव किया जाने वाले बल आघूर्ण इस प्रकार दिया जाता है।

$$\tau = mB \sin\theta$$

यदि द्विधुर $d\theta$ कोण पर धूमता हो तो किया गया कार्य है,

$$dW = \tau d\theta = mB \sin\theta d\theta$$

द्विधुर को θ_1 से θ_2 स्थिति तक धूमाने में किया गया कुल कार्य

$$W = \int_{\theta_1}^{\theta_2} mB \sin\theta d\theta = mB \int_{\theta_1}^{\theta_2} \sin\theta d\theta = -mB [\cos\theta_2 - \cos\theta_1]$$

अतः स्थितिज ऊर्जा की परिभाषा से,

$$U = W = -mB (\cos\theta_2 - \cos\theta_1)$$

$$\text{or, } U = W = -mB (\cos\theta_2 - \cos 90^\circ) = -mB \cos\theta$$

$$\text{since } \theta_2 = \theta \text{ and } \theta_1 = 90^\circ$$

$$\text{In vector form, } U = -\frac{\vec{m}}{m} \cdot \frac{\vec{B}}{B}$$

Q14. When does a magnetic dipole have maximum potential energy inside a magnetic field?

Ans: A magnetic dipole has maximum potential energy in a magnetic field when it is anti parallel (i.e. $\theta = 180^\circ$) so, $U_{\max} = mB$.

Q14. किसी चुम्बकीय क्षेत्र के भीतर एक चुम्बकीय द्विधुर कब अधिकतम स्थितिज ऊर्जा रखता है ?

उत्तर: कोई चुम्बकीय द्विधुर किसी चुम्बकीय क्षेत्र में अधिकतम स्थितिज ऊर्जा रखता है जब यह प्रति समानान्तर हों ($\theta = 180^\circ$) तब $U_{\max} = mB$

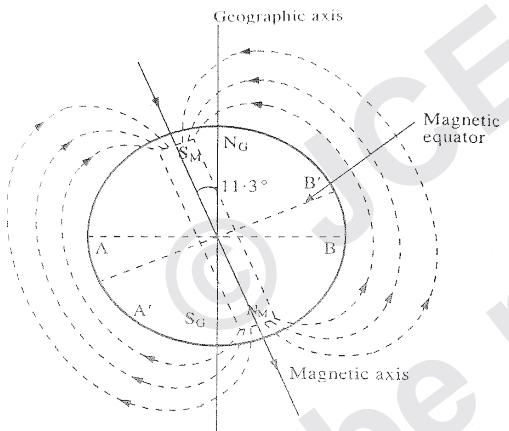
15. When does a magnetic dipole have minimum potential energy inside a magnetic field ?

Ans: A magnetic dipole has minimum potential energy in a magnetic field when \vec{m} and \vec{B} are parallel ($\theta = 0^\circ$) So, $U_{\max} = -mB$

Q15. किसी चुम्बकीय क्षेत्र के भीतर एक चुम्बकीय द्विधुर कब न्यूनतम स्थितिज ऊर्जा रखता है ?

उत्तर: कोई चुम्बकीय द्विधुर किसी चुम्बकीय क्षेत्र में न्यूनतम स्थितिज ऊर्जा रखता है जब \vec{m} तथा \vec{B} समानान्तर हों ($\theta = 0^\circ$) तब $U_{\max} = -mB$

Q16. Explain geographic pole, magnetic pole, geographic axis and magnetic axis with the help of diagrams.

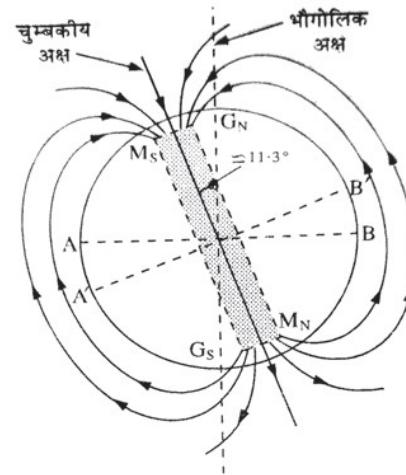

Ans: Earth behaves like a giant magnet. The N-pole of this magnet points towards the Geographical South (GS) and the S-pole points towards the Geographical North (GN). When a small magnet is suspended

freely, it points in the NS direction. The end of a freely suspended magnet which is directed towards the geographic north has an N-pole due to the attraction of the S pole of Earth's magnet. Similarly the other end of a freely suspended magnet which is directed towards geographic south, is the S-pole.

The imaginary line which joins the geographic poles (GS and GN) of the earth is called geographic axis. Similarly, the line joining the magnetic poles of the earth is called the magnetic axis.

The geographic axis and the magnetic axis do not superimpose on each other. The magnetic axis makes an angle of 11.3° with the geographic axis.

Due to the Earth's magnetism, the magnetic field lines are parallel to the Earth's surface near the magnetic equator and perpendicular to the Earth's surface near the Earth's magnetic poles.



Q16. चित्र कि सहायता से भौगोलिक ध्रुव, चुम्बकीय ध्रुव, भौगोलिक अक्ष तथा चुम्बकीय अक्ष को समझाएं।

उत्तर: पृथ्वी एक विशाल चुम्बक की भाँति व्यवहार करती है। इस चुम्बक का N-ध्रुव भौगोलिक दक्षिण (GS) की ओर रहता है तथा S-ध्रुव भौगोलिक उत्तर (GN) की ओर रहता है। जब एक छोटी चुम्बक को मुक्त रूप से लटकाया जाता है तो यह N-S दिशा में निर्देशित हो जाती है। मुक्त रूप से लटकी हुई चुम्बक का वह सिरा जो भौगोलिक उत्तर की ओर है, पृथ्वी के चुम्बक के S-ध्रुव के आकर्षण के कारण N-ध्रुव है। इसी प्रकार मुक्त रूप से लटकी हुई चुम्बक का अन्य सिरा जो भौगोलिक दक्षिण की ओर निर्देशित है, S-ध्रुव है।

वह काल्पनिक रेखा जो पृथ्वी के भौगोलिक ध्रुवों (GS तथा GN) को जोड़ती है, भौगोलिक अक्ष कहलाती है। इसी प्रकार पृथ्वी के चुम्बकीय ध्रुवों को जोड़ने वाली रेखा को चुम्बकीय अक्ष कहलाती है।

भौगोलिक अक्ष तथा चुम्बकीय अक्ष आपस में एक-दूसरे पर अध्यारोपित नहीं होते हैं। चुम्बकीय अक्ष भौगोलिक अक्ष के साथ 11.3° का कोण बनाती है। पृथ्वी के चुम्बकत्व के कारण चुम्बकीय क्षेत्र की बल रेखाएँ चुम्बकीय भूमध्य रेखा के समीप पृथ्वी की सतह के समानान्तर तथा पृथ्वी के चुम्बकीय ध्रुवों के समीप पृथ्वी की सतह के लम्बवत् होती हैं।

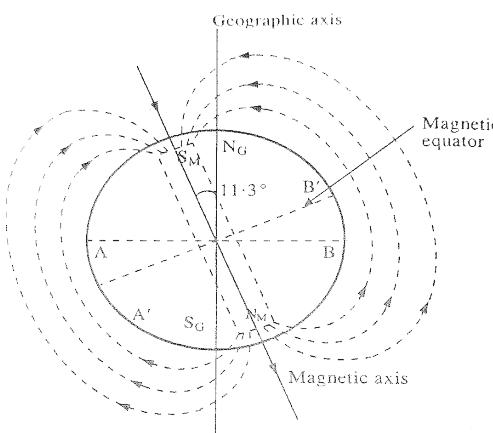
Q17. What is the geographical meridian?

Ans: The geographic meridian is the vertical plane that passes through the geographic axis.

Q17. भौगोलिक याप्योत्तर क्या है ?

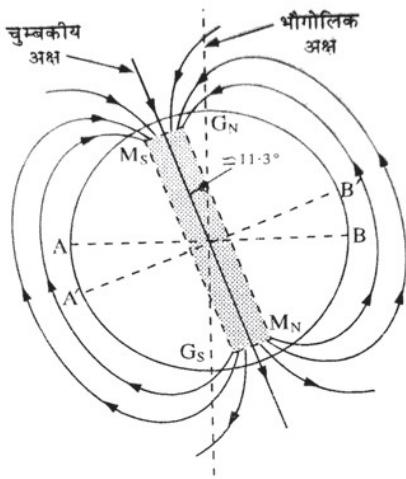
उत्तर: भौगोलिक याप्योत्तर उर्ध्वाधर तल है जो भौगोलिक अक्ष से गुजरता है।

Q18. What is the magnetic meridian?


Ans: The vertical plane which passes through the magnetic axis is called the magnetic meridian.

Q18. चुम्बकीय याप्योत्तर क्या है ?

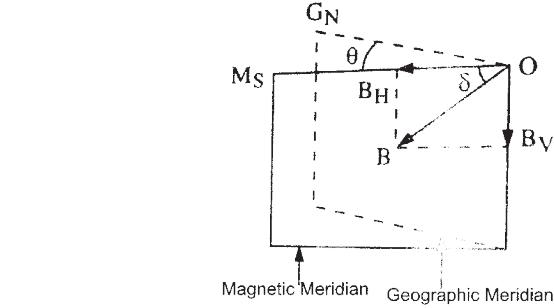
उत्तर: उर्ध्वाधर तल जो चुम्बकीय अक्ष से होकर गुजरता है, चुम्बकीय याप्योत्तर कहलाता है।


Q19. What is the magnetic equator ?

Ans: A great circle (circle having diameter A' B' as per figure) which lies perpendicular to the magnetic axis on the surface of the earth is known as magnetic equator.

19. भू-चुम्बकीय भूमध्य रेखा क्या है ?

उत्तर: एक वृहत वृत्त (चित्र के अनुसार A' B' व्यास रखने वाला वृत्त) जो पृथ्वी की सतह पर चुम्बकीय अक्ष के लम्बवत् स्थित होता है, भू-चुम्बकीय भूमध्य रेखा के नाम से जाना जाता है।



Q20. Write the names of the magnetic elements of the earth and define them?

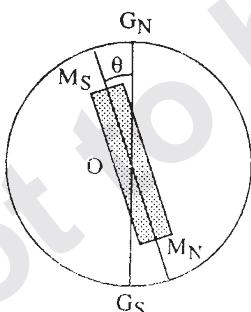
Ans: The magnitude and direction of Earth's magnetic field at any place are completely given by three quantities known as magnetic elements. These are the following:-

- (1) Magnetic declination (θ)
- (2) Magnetic inclination or dip (δ)
- (3) Horizontal component of magnetic field (B_H) of earth

(1) Magnetic declination (θ) : Magnetic declination at a place is defined as the angle between geographic meridian and magnetic meridian at that place.

Figure(B)

In figure(B) OB shows the total intensity of the earth's magnetic field. OM_s is a horizontal line in the magnetic meridian making an angle δ with OB. This angle is called the Magnetic inclination or dip (δ) of that place.


3. Horizontal component of the Earth's magnetic field (B_H) - The component of the total intensity of the magnetic field in the horizontal direction in the magnetic meridian is called the horizontal component of the Earth's magnetic field.

Q20. पृथ्वी के चुम्बकीय तत्वों के नाम लिखिए और उन्हें परिभाषित करें ?

उत्तर: किसी स्थान पर पृथ्वी के चुम्बकीय क्षेत्र की दिशा तथा परिमाण पूर्णतया तीन राशीयों द्वारा दिया जाता है, जिन्हें चुम्बकीय तत्व कहा जाता है। ये निम्नलिखित हैं:-

- (1) चुम्बकीय अवनमन या दिक्पात (θ)
- (2) चुम्बकीय नति अथवा नमन (δ)
- (3) चुम्बकीय क्षेत्र का क्षेत्रिज घटक (B_H)

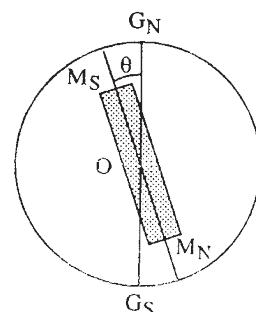
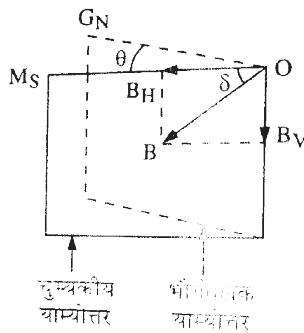

1. चुम्बकीय अवनमन या दिक्पात (θ) - किसी स्थान पर भौगोलिक याप्योत्तर तथा चुम्बकीय याप्योत्तर के मध्य कोण को उस स्थान का चुम्बकीय अवनमन या दिक्पात (θ) से परिभाषित किया जाता है।

Figure (A)

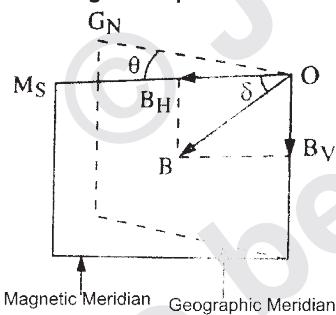
Figure (A) shows the top view of the Earth where G_N- G_S and M_N - M_S represent the geographic and magnetic meridians respectively. Then the angle G_NOM_s = θ is the magnetic declination.


2. Magnetic inclination or dip (δ) - The angle between the direction of the total intensity of the Earth's magnetic field and a horizontal line in the magnetic meridian is called Magnetic inclination or dip (δ).

चित्र(A)

चित्र (A) पृथ्वी का शीर्ष दृश्य दर्शाती है जहाँ G_N - G_S तथा M_N - M_S के क्रमशः भौगोलिक तथा चुम्बकीय याप्योत्तर को दर्शाते होते हैं। तब कोण G_NOM_s = θ , चुम्बकीय अवनमन है।

2. चुम्बकीय नति अथवा नमन (δ) - चुम्बकीय नति पृथ्वी के चुम्बकीय क्षेत्र की कुल तीव्रता की दिशा तथा चुम्बकीय याप्योत्तर में एक क्षेत्रिज रेखा के मध्य कोण को चुम्बकीय नति अथवा नमन (δ) कहते हैं।


चित्र(B)

चित्र(B) में OB चुम्बकीय क्षेत्र की कुल तीव्रता को दर्शाता है। OB चुम्बकीय याप्तोत्तर में एक क्षेत्रिज रेखा OM_S से कोण δ बनाती है। यह कोण उस स्थान का चुम्बकीय नति अथवा नमन (δ) कहलाता है।

3. पृथ्वी के चुम्बकीय क्षेत्र का क्षेत्रिज घटक (B_H)- चुम्बकीय याप्तोत्तर में क्षेत्रिज दशा में चुम्बकीय क्षेत्र की कुल तीव्रता का घटक पृथ्वी के चुम्बकीय क्षेत्र का क्षेत्रिज घटक कहलाता है।

Q21. Derive the relation for the horizontal and vertical components of the earth's magnetic field at a given location with the angle of dip.

Ans:

In the figure, B_H is the horizontal component and B_V is the vertical component of the intensity of the earth's magnetic field.

Then

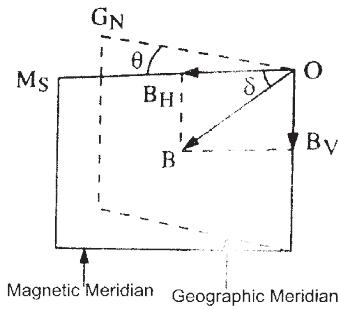
$$B_H = B \cos \delta \dots \text{(i)}$$

$$B_V = B \sin \delta \dots \text{(ii)}$$

Dividing (i) by equation (ii), we get

$$\frac{B_V}{B_H} = \frac{B \sin \delta}{B \cos \delta} = \tan \delta \dots \text{(iii)}$$

$$\tan \delta = \frac{B_V}{B_H}$$


Squaring and adding equations (i) and (ii), we get

$$B_H^2 + B_V^2 = B^2 \cos^2 \delta + B^2 \sin^2 \delta = B^2 (\cos^2 \delta + \sin^2 \delta) = B^2$$

$$B = \sqrt{B_H^2 + B_V^2} \dots \text{(iv)}$$

Q21. किसी दिये हुए स्थान पर पृथ्वी के चुम्बकीय क्षेत्र के क्षेत्रिज तथा उर्ध्व घटकों के लिए नति कोण के साथ सम्बन्ध बनाएं।

उत्तरः

Magnetic Meridian Geographic Meridian

चित्र में, B_H क्षेत्रिज घटक है तथा B_V पृथ्वी के चुम्बकीय क्षेत्र की तीव्रता का उर्ध्व घटक है।

तब

$$B_H = B \cos \delta \dots \text{(i)}$$

$$B_V = B \sin \delta \dots \text{(ii)}$$

समीकरण (ii) में (i) का भाग देने पर,

$$\frac{B_V}{B_H} = \frac{B \sin \delta}{B \cos \delta} = \tan \delta$$

$$\tan \delta = \frac{B_V}{B_H} \dots \text{(iii)}$$

समीकरण (i) व (ii) को वर्ग करके जोड़ने पर हम पाते हैं,

$$B_H^2 + B_V^2 = B^2 \cos^2 \delta + B^2 \sin^2 \delta = B^2 (\cos^2 \delta + \sin^2 \delta) = B^2$$

$$B = \sqrt{B_H^2 + B_V^2} \dots \text{(iv)}$$

Q22. How will the angle of dip change if one moves from the magnetic equator to the pole?

Ans: At different places on the earth Magnetic inclination or dip (θ) is different. If one moves from the magnetic equator towards the pole, its value changes from 0° to 90° . The value of magnetic declination (δ) is 90° at the poles and 0° at the equator.

Q22. नति कोण किस प्रकार परिवर्तित होगा यदि कोई चुम्बकीय विष्वत् रेखा से ध्रुव की ओर जाता है ?

उत्तरः पृथ्वी पर अलग-अलग स्थानों पर चुम्बकीय नति अथवा नमन (θ) अलग-अलग होता है। यदि कोई चुम्बकीय विष्वत् रेखा से ध्रुव की ओर जाता है तो इसका मान 0° से 90° तक परिवर्तित होता है। चुम्बकीय अवनमन (δ) का मान ध्रुवों पर 90° होता है तथा भूमध्य रेखा पर 0° होता है।

Q23. Where on the surface of the earth is the value of the vertical component of the earth's magnetic field zero?

Ans: The vertical component of the Earth's magnetic field at the magnetic equator is zero.

Q23. पृथ्वी के चुम्बकीय क्षेत्र का ऊर्ध्वाधर घटक का मान पृथ्वी की सतह पर कहाँ शून्य होता है?

उत्तरः चुम्बकीय भूमध्य रेखा पर पृथ्वी के चुम्बकीय क्षेत्र का ऊर्ध्वाधर घटक का मान शून्य होता है।

Q24. Where on the surface of the earth is the value of the horizontal component of the earth's magnetic field zero?

Ans: The horizontal component of the Earth's magnetic field at the magnetic pole is zero.

Q24. पृथ्वी के चुंबकीय क्षेत्र का क्षैतिज घटक का मान पृथ्वी की सतह पर कहाँ शून्य होता है?

उत्तर: धूरों पर पृथ्वी के चुंबकीय क्षेत्र का क्षैतिज घटक का मान शून्य होता है।

Q25. Define magnetic flux. Give its SI unit.

Ans: Magnetic flux - The number of magnetic field lines passing perpendicular to a surface is defined as magnetic flux. Flux is symbolically denoted by Φ . The unit of magnetic flux in the SI system is the weber (Wb) or Tm².

$$\Phi = \vec{B} \cdot \vec{A} = BA \cos\theta, \text{ where } \theta \text{ is the angle between } \vec{B} \text{ and } \vec{A}$$

Q25. चुम्बकीय फलक्स को परिभाषित करें। इसका S.I. मात्रक बताएं।

उत्तर: चुम्बकीय फलक्स (Magnetic flux) - किसी सतह से लम्बवत् गुजरने वाली चुम्बकीय क्षेत्र रेखाओं की संख्या को चुम्बकीय फलक्स के रूप में परिभाषित की जाती है। फलक्स को प्रतीकानुसार Φ के द्वारा निरूपित किया जाता है। S.I. पद्धति में चुम्बकीय फलक्स की इकाई वेबर (Wb) या Tm² है।

$$\Phi = \vec{B} \cdot \vec{A} = BA \cos\theta, \text{ जहाँ } \theta, \vec{B} \text{ और } \vec{A} \text{ के मध्य कोण हैं।}$$

Q26. Define magnetic flux density or magnetic induction (B). State its SI unit.

Ans: Magnetic Flux Density (B) or Strength of Magnetic Field: The number of field lines passing perpendicular to the unit area of a substance is defined as the magnetic flux density and it is represented by B. If Φ is the flux passing through a material of area A, then the flux density will be $B = \Phi/A$. In the SI system, the unit of magnetic flux density is the Tesla, or Wb/m².

Q26. चुम्बकीय फलक्स घनत्व या चुम्बकीय प्रेरण (B) को परिभाषित करें। इसका S.I. मात्रक बताएं।

उत्तर: चुम्बकीय फलक्स घनत्व (B) (Magnetic Flux Density or Strength of Magnetic Field): किसी पदार्थ के इकाई क्षेत्रफल के लम्बवत् गुजरने वाली क्षेत्र रेखाओं की संख्या को चुम्बकीय फलक्स घनत्व के रूप में परिभाषित किया जाता है तथा इसे B द्वारा प्रदर्शित किया जाता है। यदि A क्षेत्रफल युक्त किसी पदार्थ से गुजरने वाला फलक्स Φ हो तो फलक्स घनत्व $B = \Phi/A$ होगा। S.I. पद्धति में, चुम्बकीय फलक्स घनत्व की इकाई Tesla या Wb/m² है।

Q27. Define Intensity of Magnetisation.

Ans: The degree or extent to which a substance placed in a magnetic field can be magnetised is called Intensity of Magnetisation. It is denoted by I . When a magnetic material is placed in a magnetic field, then that material acquires magnetism. Thus the magnetised substance acquires some dipole moment.

The magnetic dipole moment of a substance per unit volume is called the intensity of magnetization (I). If m_{net} is the total amount of the dipole moment and V is the volume of the substance, then

$$I = \frac{m_{net}}{V}$$

Since $m_{net} = q_m \times 2l$, and $V = A \times 2l$

$$\text{So, } I = \frac{q_m \times 2l}{A \times 2l} = \frac{q_m \text{ (for bar magnet)}}{A \text{ (cylindrical magnet)}}$$

where q_m = pole strength of the pole, l = magnetic length of the magnet of cross-section area A.

Magnetic intensity is a vector quantity. Its SI unit is A/m.

Q27. चुम्बकीयकरण तीव्रता (I) (Intensity of Magnetisation) को परिभाषित करें।

उत्तर: वह कोटि (degree) अथवा सीमा जहाँ तक एक चुम्बकीय क्षेत्र में रखे पदार्थ का चुम्बकीयकरण किया जा सकता है उसे चुम्बकीयकरण तीव्रता (I) (Intensity of Magnetisation) कहते हैं। इसको (I) के द्वारा निरूपित किया जाता है। जब किसी चुम्बकीय पदार्थ को किसी चुम्बकीय क्षेत्र में रखा जाता है तब वह पदार्थ चुम्बकत्व को ग्रहण कर लेता है। इस प्रकार चुम्बकीयकरण का कुछ द्विध्रुव आधूर्ण हो जाता है।

पदार्थ के द्विध्रुव चुम्बकीय आधूर्ण की प्रति इकाई आयतन को चुम्बकीयकरण तीव्रता (I) कहते हैं। यदि m_{net} द्विध्रुव आधूर्ण की कुल मात्रा है तथा V उस पदार्थ का आयतन है, तब

$$I = \frac{m_{net}}{V}$$

Since $m_{net} = q_m \times 2l$, and $V = A \times 2l$

$$\text{So, } I = \frac{q_m \times 2l}{A \times 2l} = \frac{q_m \text{ (बार चुम्बक के लिए)}}{A \text{ (बेलनाकार चुम्बक के लिए)}}$$

जहाँ q_m = ध्रुव की ध्रुव सामर्थ्य

$2l$ = चुम्बक की चुम्बकीय लम्बाई

और A = अनुप्रस्थ काट का क्षेत्रफल

चुम्बकीयकरण तीव्रता एक सदिश राशि है। इसका S.I. मात्रक A/m है।

Q28. Define Magnetising Force or Magnetic Intensity (H) of magnetic field.

Ans: The extent to which the magnetising field can magnetise a substance is called the Magnetising Force or Magnetic Intensity. It is denoted by H.

The Magnetising Force or Magnetic Intensity (H) is equal to the ratio of the magnetising field B_0 to the permeability of free space μ_0 .

That is,

$$H = \frac{B_0}{\mu_0}$$

$$\text{or, } B_0 = \mu_0 H$$

Q28. चुम्बकीय क्षेत्र की तीव्रता अथवा चुम्बकन तीव्रता (H) (Magnetising Force or Magnetic Intensity) को परिभाषित करें।

उत्तर: परिमाण या सीमा जहाँ तक चुम्बकन क्षेत्र किसी पदार्थ को

चुम्बकित कर सकता है, चुम्बकित करने वाले क्षेत्र की तीव्रता अथवा चुम्बकन तीव्रता (H) (Magnetising Force or Magnetic Intensity) कहलाती है। इसे H से प्रदर्शित किया जाता है। चुम्बकीय तीव्रता H को चुम्बकन बल भी कहा जाता है। चुम्बकन क्षेत्र की तीव्रता, चुम्बकन क्षेत्र (B_0) तथा निर्वात में पारगम्यता (μ_0) के अनुपात के बराबर होती है।

अर्थात्,

$$H = \frac{B_0}{\mu_0}$$

$$\text{or, } B_0 = \mu_0 H$$

Q29. Define Magnetic Permeability (μ). State its SI unit.

Ans: The extent to which the magnetic lines of force can enter into a material is called the magnetic permeability (μ) of the material. That is, the power of conduction of magnetic lines of force through a material is known as the magnetic permeability. It is denoted by μ .

The magnetic permeability of a material is equal to the ratio of the magnitude of the magnetic induction (B) to the intensity of the magnetising field (H).

$$\text{i.e., } \mu = B/H \text{ or } B = \mu H$$

The SI unit of magnetic permeability is Tm/A.

Q29. चुम्बकीय पारगम्यता (Magnetic Permeability) (μ) को परिभाषित करें। इसका S.I. मात्रक बताएं।

उत्तर: वह परिणाम या सीमा जहाँ तक चुम्बकीय बल रेखाएं किसी पदार्थ में प्रवेश कर जाती हैं, पदार्थ के चुम्बकीय पारगम्यता (μ) कहलाती है। अर्थात्, किसी पदार्थ के द्वारा चुम्बकीय बल रेखाओं के चालन की शक्ति चुम्बकीय पारगम्यता के रूप में जानी जाती है। इसे μ द्वारा प्रदर्शित किया जाता है।

किसी पदार्थ की चुम्बकीय पारगम्यता चुम्बकीय प्रेरण (B) के परिमाण तथा चुम्बकित करने वाले क्षेत्र की तीव्रता (H) के अनुपात के बराबर होती है।

$$\text{अर्थात्, } \mu = B/H \text{ या } B = \mu H$$

चुम्बकीय पारगम्यता की S.I. इकाई Tm/A है।

30. Define relative magnetic permeability (μ_r).

Ans: The ratio of flux density in a material to flux density in vacuum (B_0) is known as relative magnetic permeability.

i.e,

$$\mu_r = \frac{B}{B_0} = \frac{\mu H}{\mu_0 H} = \frac{\mu}{\mu_0}$$

$$\text{So, } \mu = \mu_0 \mu_r$$

μ_r are dimensionless.

Q30. आपेक्ष चुम्बकीय पारगम्यता (μ_r) को परिभाषित करें।

उत्तर: किसी पदार्थ में फ्लक्स घनत्व तथा निर्वात में फ्लक्स घनत्व (B_0) का अनुपात आपेक्ष चुम्बकीय पारगम्यता के रूप में जाना जाता है। अर्थात्

$$\mu_r = \frac{B}{B_0} = \frac{\mu H}{\mu_0 H} = \frac{\mu}{\mu_0}$$

$$\text{So, } \mu = \mu_0 \mu_r$$

μ_r विमाहीन है।

Q31. Define magnetic susceptibility.

Ans: It is the property of a material which shows how easily the material can be magnetised when placed in a magnetic field. It is denoted by χ_m

Magnetic susceptibility is equal to the ratio of magnetising intensity (I) and magnetising field (H).

That

$$\text{magnetic susceptibility} (\chi_m) = \frac{I}{H}$$

χ_m has no unit. It's just a number.

Q31. चुम्बकीय सुप्राहिता या प्रवृत्ति को परिभाषित करें।

उत्तर: यह किसी पदार्थ का गुण है जो चुम्बकीय क्षेत्र में रखे जाने पर पदार्थ के आसानी से चुम्बकन को दर्शाता है। इसे χ_m से प्रदर्शित किया जाता है।

चुम्बकीय सुप्राहिता चुम्बकीकरण तीव्रता (I) तथा चुम्बकन तीव्रता (H) के अनुपात के बराबर होता है।

अर्थात्

$$\text{magnetic susceptibility} (\chi_m) = \frac{I}{H}$$

χ_m मात्रकहीन है। यह मात्र एक संख्या है।

Q32. Establish relation between Magnetic Permeability and Magnetic Susceptibility.

Ans: The total magnetic flux density (B) in a material is the sum of the magnetic flux density in vacuum (B_0) and the magnetic flux density due to the magnetization of the material (B_m).

i.e.

$$B = B_0 + B_m \quad \dots \dots \dots (i)$$

$$\text{or, } B = \mu_0 H + \mu_0 I = \mu_0 (H + I)$$

$$\text{Since } B_0 = \mu_0 H \text{ and } B_m = \mu_0 I$$

$$\text{or, } \frac{B}{H} = \mu_0 \left(1 + \frac{I}{H} \right) \quad \dots \dots \dots (ii)$$

$$\text{or, } \mu = \mu_0 \left(1 + \chi_m \right) \quad \dots \dots \dots (iii)$$

$$\text{Since } \mu = \frac{B}{H} \text{ and } \chi_m = \frac{I}{H}$$

$$\text{or, } \frac{\mu}{\mu_0} = \left(1 + \chi_m \right)$$

$$\text{or, } \mu_r = \left(1 + \chi_m \right) \quad \dots \dots \dots (iv)$$

$$\text{Since } \mu_r = \frac{\mu}{\mu_0}$$

Q32. चुम्बकीय पारगम्यता तथा चुम्बकीय सुग्राहिता या प्रवृत्ति के मध्य सम्बन्ध (Relation between Magnetic Permeability and Magnetic Susceptibility) स्थापित करें।

उत्तर: किसी पदार्थ में कुल चुम्बकीय फ्लक्स घनत्व (B) निवार्त में चुम्बकीय फ्लक्स घनत्व (B_o) तथा पदार्थ के चुम्बकत्व (B_m) के कारण चुम्बकीय फ्लक्स घनत्व का योग है।

अर्थात्

$$B = B_0 + B_m \quad \dots \dots \dots (i)$$

$$\text{or, } B = \mu_o H + \mu_o I = \mu_o (H + I)$$

$$\text{Since } B_0 = \mu_o H \text{ and } B_m = \mu_o I$$

$$\text{or, } \frac{B}{H} = \mu_o \left(1 + \frac{I}{H} \right) \quad \dots \dots \dots (ii)$$

$$\text{or, } \mu = \mu_o \left(1 + \chi_m \right) \quad \dots \dots \dots (iii)$$

$$\text{Since } \mu = \frac{B}{H} \text{ and } \chi_m = \frac{I}{H}$$

$$\text{or, } \frac{\mu}{\mu_o} = \left(1 + \chi_m \right)$$

$$\text{or, } \mu_r = \left(1 + \chi_m \right) \quad \dots \dots \dots (iv)$$

$$\text{Since } \mu_r = \frac{\mu}{\mu_o}$$

Q33. Compare ferromagnetic material, paramagnetic material and diamagnetic material.

Ans:

	Ferromagnetic substances	Paramagnetic substances	Diamagnetic substances
1	These substances are strongly attracted by a magnet.	These substances are feebly attracted by a magnet.	These substances are repelled by a magnet.
2	These substances when placed in magnetic fields are strongly magnetised in the direction of the field.	These substances, when placed in a magnetic field, acquire feeble magnetism in the direction of the magnetic field.	These substances, when placed in a magnetic field, acquire feeble magnetism opposite to the direction of the magnetic field.
3	If a rod of Ferromagnetic material is suspended freely between two magnetic poles, its axis becomes parallel to the magnetic field.	If a rod of Paramagnetic material is suspended freely between two magnetic poles, its axis becomes parallel to the magnetic field.	If a rod of diamagnetic material is suspended freely between two magnetic poles, its axis becomes perpendicular to the magnetic field.

4	In a non-uniform magnetic field, they move from weaker to stronger parts of the magnetic field rapidly.	In a non-uniform magnetic field, they move from weaker to stronger parts of the magnetic field slowly.	In a non-uniform magnetic field, the diamagnetic substances are attracted towards the weaker fields, i.e. they move from stronger to weaker magnetic field.
5	In these substances, magnetic lines of force are much closer than in air.	In these substances, the magnetic lines of force are closer than in air.	In these substances, the magnetic lines of force are farther than in air.
6	These substances also have a permanent magnetic moment.	These substances have a small permanent magnetic moment.	The resultant magnetic moment of these substances is zero.

Q33. लौहचुम्बकीय पदार्थ, अनुचुम्बकीय पदार्थ तथा प्रतिचुम्बकीय पदार्थ की तुलना कीजिए।

उत्तर:

	लौहचुम्बकीय पदार्थ	अनुचुम्बकीय पदार्थ	प्रतिचुम्बकीय पदार्थ
1	लौहचुम्बकीय पदार्थ चुम्बक द्वारा प्रबल रूप से आकर्षित होते हैं।	अनुचुम्बकीय पदार्थ चुम्बक द्वारा दुर्बल रूप से आकर्षित होते हैं।	प्रतिचुम्बकीय पदार्थ चुम्बक द्वारा प्रतिकर्षित होते हैं।
2	चुम्बकीय क्षेत्र में रखे जाने पर ये पदार्थ क्षेत्र की दिशा में प्रबल रूप से चुम्बकित हो जाते हैं।	चुम्बकीय क्षेत्र में रखे जाने पर ये पदार्थ चुम्बकीय क्षेत्र की दिशा में अल्प चुम्बकत्व प्राप्त कर लेते हैं	चुम्बकीय क्षेत्र में रखे जाने पर ये पदार्थ चुम्बकीय क्षेत्र की दिशा के विपरीत अल्प चुम्बकत्व प्राप्त कर लेते हैं।
3	यदि लौहचुम्बकीय पदार्थ की एक छड़ को दो चुम्बकीय ध्रुवों के बीच स्वतंत्र रूप से लटकाया जाता है, तो इसकी ध्रुवी चुम्बकीय क्षेत्र के समानांतर हो जाती है।	यदि अनुचुम्बकीय पदार्थ की छड़ को दो चुम्बकीय ध्रुवों के बीच स्वतंत्र रूप से लटकाया जाता है, तो इसकी ध्रुवी चुम्बकीय क्षेत्र के समानांतर हो जाती है।	यदि प्रतिचुम्बकीय पदार्थ की एक छड़ को दो चुम्बकीय ध्रुवों के बीच स्वतंत्र रूप से लटकाया जाता है, तो इसकी ध्रुवी चुम्बकीय क्षेत्र के लंबवत हो जाती है।
4	असमान चुम्बकीय क्षेत्र में, लौहचुम्बकीय पदार्थ कमज़ोर चुम्बकीय क्षेत्र से मजबूत चुम्बकीय क्षेत्र की ओर तेजी से जाते हैं।	असमान चुम्बकीय क्षेत्र में, अनुचुम्बकीय पदार्थ चुम्बकीय क्षेत्र के कमज़ोर से मजबूत विस्तरों की ओर धीरे-धीरे जाते हैं।	असमान चुम्बकीय क्षेत्र में प्रतिचुम्बकीय पदार्थ कमज़ोर क्षेत्रों की ओर आकर्षित होते हैं, अर्थात् वे मजबूत से कमज़ोर चुम्बकीय क्षेत्र की ओर बढ़ते हैं।
5	इन पदार्थों में चुम्बकीय बल रेखाएँ हवा की तुलना में बहुत अधिक निकट होती हैं।	इन पदार्थों में चुम्बकीय बल रेखाएँ हवा की तुलना में अधिक निकट होती हैं।	इन पदार्थों में चुम्बकीय बल रेखाएँ हवा की तुलना में दूर होती हैं।
6	इन पदार्थों का स्थायी चुम्बकीय आघूर्ण भी होता है।	इन पदार्थों का एक स्थायी चुम्बकीय अल्प होता है।	इन पदार्थों का परिणामी चुम्बकीय आघूर्ण शून्य होता है।

Q34. Compare ferromagnetic material, paramagnetic material and diamagnetic material on the basis of susceptibility and permeability .

Ans:

	Ferromagnetic substances	Paramagnetic substances	Diamagnetic substances
1	Their permeability is much greater than one ($\mu \gg 1$).	Their permeability is slightly greater than one ($\mu > 1$).	Their permeability is less than one ($\mu < 1$).
2	Their susceptibility is χ_m large and positive. They also follow Curie's law.	Their susceptibility is small and positive. Their susceptibility is inversely proportional to absolute temperature.	Their susceptibility is small and negative. Their susceptibility is independent of temperature.

Q34. संवेदनशीलता और पारगम्यता के आधार पर लोहचुम्बकीय पदार्थ, अनुचुम्बकीय पदार्थ तथा प्रतिचुम्बकीय पदार्थ की तुलना कीजिए।

उत्तर:

	लोहचुम्बकीय पदार्थ	अनुचुम्बकीय पदार्थ	प्रतिचुम्बकीय पदार्थ
1	उनकी पारगम्यता एक से बहुत अधिक होती है। ($\mu \gg 1$)	उनकी पारगम्यता एक से थोड़ी अधिक होती है। ($\mu > 1$)	उनकी पारगम्यता एक से कम होती है। ($\mu < 1$)
2	उनकी चुम्बकीय सुग्राहिता χ_m बड़ी और धनात्मक होती है। वे क्षूपी के नियम का भी पालन करते हैं।	उनकी चुम्बकीय सुग्राहिता छोटी और धनात्मक होती है। उनकी चुम्बकीय सुग्राहिता पूर्ण तापमान के क्षुक्तमानुपाती होती है।	उनकी चुम्बकीय सुग्राहिता छोटी और नकारात्मक होती है। उनकी चुम्बकीय सुग्राहिता तापमान से स्वतंत्र होती है।

35. What is Curie Law in Magnetism ?

Ans: The magnetic susceptibility of a paramagnetic substance is inversely proportional to its absolute temperature.

$$\chi_m \propto \frac{1}{T} \Rightarrow \chi_m T = \text{constant}$$

where, χ_m = magnetic susceptibility of a paramagnetic substance

and T = absolute temperature.

At Curie temperature, ferromagnetic substances change into paramagnetic substances.

Q35. चुम्बकत्व में क्षूपी का नियम क्या है ?

उत्तर: अनुचुम्बकीय पदार्थ की चुम्बकीय सुग्राहिता इसके पूर्ण तापमान के न्यूट्रायन पदार्थी होती है।

$$\chi_m \propto \frac{1}{T} \Rightarrow \chi_m T = \text{constant}$$

जहाँ, χ_m = अनुचुम्बकीय पदार्थ की चुम्बकीय सुग्राहिता है।

और T = पूर्ण तापमान है।

क्षूपी ताप पर लोहचुम्बकीय पदार्थ अनुचुम्बकीय पदार्थों में परिवर्तित हो जाते हैं।

Q36. Compare Electromagnet and Permanent Magnet.

Ans:

Electromagnet	Permanent Magnet
These are temporarily magnetised	They are permanently magnetised
They are usually made of soft materials.	These are usually made of hard materials.
The strength of the magnetic field lines can be varied according to our need.	The strength of the magnetic field line cannot be varied.
The poles of an electromagnet can be altered.	The poles of a Permanent magnet cannot be changed.
Example of a temporary magnet is solenoid wound across a nail and connected to a battery.	Example of a permanent magnet is a Bar Magnet.

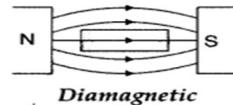
विद्युत चुम्बक और स्थायी चुम्बक कि तुलना कीजिए।

उत्तर:

विद्युत चुम्बक (इलेक्ट्रोमैग्नेट)	स्थायी चुम्बक
ये अस्थायी रूप से चुम्बकित होते हैं	ये स्थायी रूप से चुम्बकित होते हैं
ये आमतौर पर नरम सामग्री से बने होते हैं।	ये आमतौर पर कठोर सामग्री से बने होते हैं।
चुम्बकीय क्षेत्र रेखाओं की प्रबलता को हमारी आवश्यकता के अनुसार बदला जा सकता है।	चुम्बकीय क्षेत्र रेखा की शक्ति स्थिर होती है अतः इसमें परिवर्तन नहीं किया जा सकता है।
विद्युत चुम्बक के ध्रुवों को बदला जा सकता है।	स्थायी चुम्बक के ध्रुवों को बदला नहीं जा सकता है।
एक अस्थायी चुम्बक का उदाहरण एक कील पर बैंधा हुआ सोलनॉइड है जो एक बैटरी से चलता है।	स्थायी चुम्बक का उदाहरण बार चुम्बक है।

Q37. Draw magnetic field lines when a (i) diamagnetic, (ii) paramagnetic substances are placed in an external magnetic field.

Ans: (i) When a diamagnetic material is placed in an external magnetic field.



(ii) When a paramagnetic material is placed in an external magnetic field.

Q37. जब (i) प्रतिचुम्बकीय, (ii) अनुचुम्बकीय पदार्थ किसी बाहरी चुम्बकीय क्षेत्र में रखे जाते हैं तो चुम्बकीय क्षेत्र रेखाएँ खींचिए।

उत्तर: (i) जब एक प्रतिचुम्बकीय पदार्थ को बाहरी चुम्बकीय क्षेत्र में रखा जाता है।

(ii) जब एक अनुचुम्बकीय पदार्थ को बाहरी चुम्बकीय क्षेत्र में रखा जाता है।

