SET 1 – Equilibrium:

- 1. The word equilibrium means
 - a) A fast reaction
 - b) A state of balance
 - c) A complete reaction
 - d) A reversible reaction
- 2. Chemical equilibrium is attained when
 - a) Reactants completely change to products
 - b) The rate of forward reaction = rate of backward reaction
 - c) Reaction stops completely
 - d) Products start decomposing
- 3. Chemical equilibrium is a
 - a) Dynamic state
 - b) Static state
 - c) Stationary state
 - d) Temporary state
- 4. In a reversible reaction, equilibrium is possible only when
 - a) Reaction is exothermic
 - b) Reaction is endothermic
 - c) Reaction occurs in a closed system
 - d) Reaction occurs in open system
- 5. Dynamic equilibrium means
 - a) No molecules react
 - b) Forward and backward reactions occur at equal rate
 - c) Reaction stops
 - d) Only reactants exist
- 6. At equilibrium, concentration of reactants and products
 - a) Become equal
 - b) Become zero
 - c) Remain constant
 - d) Continuously change
- 7. Law of mass action was given by
 - a) Guldberg and Waage
 - b) Le Chatelier
 - c) Arrhenius
 - d) Ostwald
- 8. Law of mass action states that
 - a) Rate ∞ product of molar concentrations
 - b) Rate ∝ sum of molar concentrations
 - c) Rate = constant
 - d) Rate independent of concentration

- 9. For the reaction A + B \rightleftharpoons C + D, equilibrium constant Kc =
 - a) [C][D]/[A][B]
 - b) [A][B]/[C][D]
 - c) [A][B][C][D]
 - d) None
- 10. When concentration is expressed in mol L⁻¹, equilibrium constant is
 - a) Kc
 - b) Kp
 - c) Ka
 - d) Kb
- 11. When pressure terms are used, equilibrium constant is
 - a) Kp
 - b) Kc
 - c) Kw
 - d) Ka
- 12. Relationship between Kp and Kc is
 - a) Kp = Kc (RT) $^\Delta$ n
 - b) Kp = Kc $/(RT)^{\Delta}n$
 - c) Kp = $1/Kc (RT)^{\Delta}n$
 - d) Kp = Kc R/T
- 13. For the reaction $N_2 + 3H_2 \rightleftharpoons 2NH_3$, $\Delta n =$
 - a) 2 4 = -2
 - b) 4 2 = +2
 - c) 3
 - d) 0
- 14. If $\Delta n = 0$, then Kp =
 - a) Kc
 - b) 1/Kc
 - c) Kc²
 - d) Kc/RT
- 15. The equilibrium constant depends on
 - a) Temperature
 - b) Pressure
 - c) Catalyst
 - d) Volume
- 16. The equilibrium constant is independent of
 - a) Catalyst
 - b) Temperature
 - c) Nature of substance
 - d) Reaction
- 17. Value of Kc gives idea about
 - a) Extent of reaction
 - b) Rate of reaction
 - c) Mechanism of reaction

- d) Temperature
- 18. Large value of Kc indicates
 - a) Reaction almost complete
 - b) Reaction negligible
 - c) Equilibrium far on reactant side
 - d) Reaction slow
- 19. Small value of Kc indicates
 - a) Forward reaction favoured
 - b) Backward reaction favoured
 - c) Equilibrium at mid-point
 - d) None
- 20. For homogeneous equilibrium
 - a) All reactants and products in same phase
 - b) Different phases
 - c) One gas and one solid
 - d) None
- 21. For heterogeneous equilibrium
 - a) Different phases
 - b) Same phase
 - c) All gases
 - d) All liquids
- 22. Example of heterogeneous equilibrium
 - a) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$
 - b) $H_2 + I_2 \rightleftharpoons 2HI$
 - c) $N_2 + 3H_2 \rightleftharpoons 2NH_3$
 - d) $2SO_2 + O_2 \rightleftharpoons 2SO_3$
- 23. If Kc = 1, then
 - a) Both reactants and products equally favoured
 - b) Forward favoured
 - c) Backward favoured
 - d) Reaction incomplete
- 24. The value of Kc changes with
 - a) Temperature
 - b) Concentration
 - c) Pressure
 - d) Catalyst
- 25. When reaction quotient Q = K, the system is
 - a) At equilibrium
 - b) Moving forward
 - c) Moving backward
 - d) Spontaneous
- 26. When Q < K, the reaction proceeds
 - a) Forward

<u>し</u> L	ASS XI CHE CH: 6
	b) Backward c) Equilibrium d) Stops
27.	When Q > K, the reaction proceeds – a) Backward b) Forward c) Equilibrium d) None
28.	Le Chatelier's principle predicts – a) Direction of equilibrium shift b) Rate of reaction c) Mechanism d) Catalyst effect
29.	If concentration of reactant increases, equilibrium shifts – a) Forward b) Backward c) No change d) None
30.	If concentration of product increases, equilibrium shifts – a) Backward b) Forward c) No effect d) None
31.	For exothermic reaction, increase in temperature shifts equilibrium – a) Backward b) Forward c) No change d) None
32.	For endothermic reaction, increase in temperature shifts equilibrium – a) Forward b) Backward c) No effect d) None
33.	Decrease in temperature favours – a) Exothermic reaction b) Endothermic reaction c) Both d) None

34. Increase in temperature favours – a) Endothermic reaction b) Exothermic reaction

c) Both d) None

35.	Increase in pressure favours the side with –
	a) Fewer moles of gas
	b) More moles of gas
	c) No gas
	d) None
36.	Decrease in pressure favours the side with –
	a) More moles of gas
	b) Fewer moles
	c) Equal moles
	d) No change
37.	In $N_2 + 3H_2 \rightleftharpoons 2NH_3$, increase in pressure shifts equilibrium –
	a) Right (towards NH₃)
	b) Left
	c) No change
	d) None
38.	In $CaCO_3 \rightleftharpoons CaO + CO_2$, increase in pressure shifts equilibrium –
	a) Left
	b) Right
	c) No effect
	d) None
39.	Effect of catalyst on equilibrium constant –
	a) No effect
	b) Increases
	c) Decreases
	d) Doubles
40.	Catalyst affects –
	a) Rate of attainment of equilibrium
	b) Value of K
	c) Both
	d) None
41.	Equilibrium constant of reverse reaction =
	a) 1/K
	b) K
	c) K ²
	d) √K
42.	If stoichiometric equation is multiplied by 2, K' =
	a) K²
	b) K
	c) √K
	d) 1/K
43.	If reaction is reversed, ΔG° =
	a) –ΔG°original
	b) +ΔG°original
	c) 0

- d) None
- 44. Unit of Kc depends on
 - a) ∆n
 - b) ΔH
 - c) ΔS
 - d) ΔG
- 45. For $\Delta n = 0$, Kc is
 - a) Dimensionless
 - b) Has units
 - c) Variable
 - d) Undefined
- 46. For $2NO_2 \rightleftharpoons N_2O_4$, $\Delta n =$
 - a) -1
 - b) +1
 - c) 0
 - d) 2
- 47. Equilibrium constant expresses
 - a) Concentration ratio at equilibrium
 - b) Rate of reaction
 - c) Activation energy
 - d) None
- 48. Equilibrium in a physical process is
 - a) Physical equilibrium
 - b) Chemical equilibrium
 - c) Both
 - d) None
- 49. Vapour pressure equilibrium between liquid and vapour is
 - a) Dynamic equilibrium
 - b) Static equilibrium
 - c) Mechanical equilibrium
 - d) None
- 50. In equilibrium state
 - a) Properties remain constant
 - b) Reaction stops
 - c) Only products remain
 - d) Only reactants remain

Answer Key – SET 1

31-a 32-a 33-a 34-a 35-a 36-a 37-a 38-a 39-a 40-a 41-a 42-a 43-a 44-a 45-a 46-a 47-a 48-a 49-a 50-a