CLASS XI BIO CH 12

Set 4 – Respiration in Plants (Advanced Conceptual / NEET-Level MCQs)

 1. In aerobic respiration, most of the ATP is produced during — A) Glycolysis B) Krebs cycle C) Electron transport chain D) Link reaction
2. Which of the following statements about glycolysis is <i>incorrect</i>?A) It occurs in cytoplasm B) It requires oxygen C) It yields pyruvate D) It produces a net gain of 2 ATP
 3. The enzyme hexokinase catalyses — A) Glucose → Glucose-6-phosphate B) Fructose → Fructose-6-phosphate C) Pyruvate → Acetyl CoA D) Glucose → Fructose
 4. When muscles perform vigorous exercise under limited oxygen, the end product formed is A) Ethanol B) Lactic acid C) CO₂ D) Acetyl CoA
 5. The Krebs cycle is amphibolic because it — A) Involves both catabolic and anabolic reactions B) Occurs only in mitochondria C) Produces ATP D) Occurs in both aerobic and anaerobic respiration
6. The enzyme responsible for conversion of fumarate to malate is — A) Fumarase B) Malate dehydrogenase C) Succinate dehydrogenase D) Aldolase
 7. NADH and FADH₂ act as — A) Oxidising agents B) Reducing agents C) Coenzymes D) Enzymes
8. The function of oxygen in aerobic respiration is to — A) Accept electrons and form water B) Oxidise NADH C) Break glucose D) Form ATP directly
 9. The number of ATP molecules generated per glucose molecule by substrate-level phosphorylation during glycolysis and Krebs cycle is — A) 1 B) 2 C) 4 D) 6
10. During ETS, electrons move from — A) High to low redox potential B) Low to high redox potential C) ATP to ADP D) NADH to NAD ⁺
11. Cyanide inhibits respiration by — A) Blocking cytochrome oxidase B) Blocking NADH dehydrogenase C) Inhibiting F₀F₁ ATPase D) Preventing pyruvate formation

12 . The enzyme responsible for phosphorylation at substrate level in Krebs cycle is — A) Succinyl CoA synthetase B) Succinate dehydrogenase C) Malate dehydrogenase D) Citrate synthase
13. The total number of decarboxylation reactions during complete oxidation of one glucose molecule is — A) 2 B) 4 C) 6 D) 8
14. Which process takes place both in plants and animals?A) Photosynthesis B) Respiration C) Nitrogen fixation D) Transpiration
15. Respiratory quotient (RQ) value less than 1 indicates — A) Carbohydrate respiration B) Fat or protein as substrate C) Anaerobic respiration D) Organic acid respiration
16. The total number of oxygen molecules required for complete oxidation of one glucose molecule is — A) 4 B) 6 C) 8 D) 10
17. In the absence of oxygen, the electron transport chain —A) Stops B) Continues normally C) Produces more ATP D) Produces more CO₂
18. In the ETS, which complex transfers electrons from NADH to ubiquinone? A) Complex I B) Complex II C) Complex III D) Complex IV
19. Which of the following pairs of reactions directly yield ATP? A) 1,3-BPG \rightarrow 3-PG and Succinyl CoA \rightarrow Succinate B) Glucose \rightarrow G6P and Pyruvate \rightarrow Acetyl-CoA C) Fumarate \rightarrow Malate and Malate \rightarrow Oxaloacetate D) All of these
20. The energy released per molecule of glucose completely oxidised is approximately — A) 2870 kJ/mol B) 3870 kJ/mol C) 1870 kJ/mol D) 4800 kJ/mol
21. The enzyme cytochrome oxidase is located in — A) Inner mitochondrial membrane B) Outer mitochondrial membrane C) Matrix D) Cytoplasm
 22. Uncouplers of oxidative phosphorylation (like DNP) act by — A) Destroying proton gradient B) Inhibiting ETS C) Inhibiting ATP synthase D) Increasing oxygen consumption
23. Which of the following directly yields NADH?A) Glycolysis B) Link reaction C) Krebs cycle D) All of these
24. Which intermediate of the TCA cycle is used in amino acid synthesis? A) α-Ketoglutarate B) Citrate C) Malate D) Fumarate
25. Which of the following reactions does not release CO₂? A) Glycolysis B) Link reaction C) TCA cycle D) Fermentation

26. The energy from oxidation of one mole of glucose is used to form approximately — A) 38 ATP B) 40 ATP C) 32 ATP D) 36 ATP
27. The number of ATP formed from one molecule of FADH $_2$ during ETS is — A) 1 B) 2 C) 3 D) 4
28. If the RQ value of a substrate is 0.7, it indicates that the substrate is — A) Carbohydrate B) Fat C) Protein D) Organic acid
29. Which one is <i>not</i> an example of substrate-level phosphorylation?A) Conversion of phosphoenolpyruvate to pyruvate B) Succinyl-CoA to succinate C)Oxidation of NADH D) None of these
30. The role of NAD ⁺ in respiration is to — A) Accept hydrogen and electrons B) Supply energy C) Release CO ₂ D) Act as a substrate
31. The process that is inhibited when cyanide is added to respiring cells —A) Electron transport B) Glycolysis C) Fermentation D) Substrate-level phosphorylation
32. The hydrogen carriers in ETS are — A) NADH and FADH ₂ B) NAD ⁺ and ATP C) CO ₂ and O ₂ D) Pyruvate and Acetyl CoA
33. Each turn of the TCA cycle yields — A) 3 NADH, 1 FADH ₂ , 1 ATP B) 2 NADH, 1 FADH ₂ , 1 ATP C) 3 NADH, 2 FADH ₂ , 1 ATP D) 4 NADH, 1 FADH ₂ , 2 ATP
34. The final product of complete oxidation of one molecule of glucose is — A) CO ₂ and H ₂ O B) CO ₂ and Ethanol C) Lactic acid D) Pyruvate
35. The overall efficiency of aerobic respiration is about — A) 20% B) 40% C) 60% D) 80%
36. ATP is formed from ADP and inorganic phosphate by —A) ATP synthase B) Dehydrogenase C) Kinase D) Oxidase
 37. The ETS in mitochondria results in — A) Proton accumulation in intermembrane space B) Proton flow into matrix C) Proton gradient in cytoplasm D) None
38. The main function of Krebs cycle is — A) Production of NADH and FADH $_2$ B) Production of glucose C) Conversion of pyruvate to CO $_2$ D) Formation of ATP
39. The step that connects anaerobic and aerobic respiration is — A) Formation of acetyl CoA B) Formation of pyruvate C) Formation of CO ₂ D) Formation of lactate
40. Which of the following represents a redox pair? A) NAD+/NADH B) FAD/FADH ₂ C) Both A and B D) ATP/ADP

- 41. Which enzyme catalyses the oxidation of malate to oxaloacetate?

 A) Malate dehydrogenase B) Succinate dehydrogenase C) Fumarase D) Aldolase
 42. The enzyme that converts citrate to isocitrate is —

 A) Aconitase B) Isocitric dehydrogenase C) Citrate synthase D) Fumarase

 43. The number of oxygen atoms in one molecule of acetyl-CoA is —

 A) 1 B) 2 C) 3 D) 4

 44. The compound that enters the TCA cycle from glycolysis is —

 A) Acetyl CoA B) Pyruvate C) Malate D) Glucose

 45. During respiration, hydrogen is removed by —

 A) Dehydrogenases B) Decarboxylases C) Oxidases D) Synthases

 46. The enzyme that adds phosphate group without using ATP is —

 A) Kinase B) Phosphorylase C) Isomerase D) Dehydrogenase

 47. Which of the following is an anaplerotic reaction?

 A) Conversion of pyruvate to oxaloacetate B) Conversion of pyruvate to acetyl-CoA C)
- **48.** The common intermediate between carbohydrate, fat, and protein metabolism is A) Acetyl CoA B) Pyruvate C) α-Ketoglutarate D) Malate

Conversion of succinate to fumarate D) Conversion of fumarate to malate

- **49.** The number of molecules of CO₂ produced from one glucose in Krebs cycle is A) 2 B) 4 C) 6 D) 8
- 50. The complete oxidation of one mole of glucose releases about —A) 2870 kJ energy B) 3870 kJ C) 1870 kJ D) 5000 kJ

Answer Key (Set 4)

1-C, 2-B, 3-A, 4-B, 5-A, 6-A, 7-B, 8-A, 9-C, 10-A, 11-A, 12-A, 13-C, 14-B, 15-B, 16-B, 17-A, 18-A, 19-A, 20-A, 21-A, 22-A, 23-D, 24-A, 25-A, 26-A, 27-B, 28-B, 29-C, 30-A, 31-A, 32-A, 33-A, 34-A, 35-B, 36-A, 37-A, 38-A, 39-A, 40-C, 41-A, 42-A, 43-B, 44-A, 45-A, 46-B, 47-A, 48-A, 49-B, 50-A.