CLASS XI BIO CH 11

a) Jan Ingenhousz

MCQ Set 4: Photosynthesis in Higher Plants

1. Who discovered that a mint plant restores the air in a bell jar?

b) Joseph Priestley c) Julius von Sachs d) Melvin Calvin
2. Ingenhousz showed that the bubbles formed around green parts of aquatic plants in sunlight are:a) Carbon dioxideb) Oxygenc) Nitrogend) Hydrogen
3. Julius von Sachs found that glucose is usually stored as:a) Sucroseb) Starchc) Cellulosed) Glycogen
 4. Engelmann used aerobic bacteria to detect the sites of: a) CO₂ fixation b) O₂ evolution c) Glucose synthesis d) Starch storage

- 5. The equation $CO_2+H_2O\rightarrow Light[CH_2O]+O_2$ represents:
- a) The correct overall process
- b) The empirical equation
- c) The C4 pathway
- d) Photorespiration
- 6. Van Niel's equation for photosynthesis is $2H_2A+CO_2\rightarrow Light 2A+CH_2O+H_2O$, In green plants, H_2A is:
- a) H_2S
- b) H₂O
- c) CH₄
- d) NH₃
- 7. The O_2 released during photosynthesis comes from $\mathrm{H}_2\mathrm{O}$. This was proved using:
- a) Prism experiments
- b) Radioisotopic techniques
- c) KOH experiments
- d) Bacterial studies
- 8. Photosynthesis occurs in all green parts of the plant, but mainly in the:
- a) Roots

- b) Leaves c) Stem d) Flowers
- 9. Within the chloroplast, the light reactions occur in the:
- a) Stroma
- b) Membrane system
- c) Starch granule
- d) Lipid droplet
- 10. The light-harvesting complexes are found in:
- a) PS I only
- b) PS II only
- c) Both PS I and PS II
- d) Neither PS I nor PS II
- 11. Which pigment is yellow to yellow-orange in the chromatogram?
- a) Chlorophyll a
- b) Chlorophyll b
- c) Xanthophylls
- d) Carotenoids
- 12. The absorption spectrum of chlorophyll a shows maximum absorption in the:
- a) Green region
- b) Blue and red regions
- c) Yellow region
- d) Orange region
- 13. The action spectrum of photosynthesis is determined by the rate of photosynthesis at different:
- a) Temperatures
- b) Light intensities
- c) Wavelengths
- d) CO₂ concentrations
- 14. Accessory pigments transfer the absorbed energy to:
- a) Chlorophyll a
- b) Chlorophyll b
- c) Carotenoids
- d) Xanthophylls
- 15. The reaction centre in a photosystem consists of:
- a) Hundreds of pigment molecules
- b) A single chlorophyll a molecule
- c) Proteins only
- d) Lipids only
- 16. The reaction centre in PS I is called P700 because it absorbs light at:
- a) 680 nm
- b) 700 nm
- c) 650 nm
- d) 750 nm

18. The electron transport chain between PS II and PS I consists of: a) Cytochromes b) RuBisCO c) ATP synthase d) PEPcase 19. The Z scheme describes the flow of: a) Protons b) Electrons c) Water d) Carbon dioxide 20. The splitting of water produces protons, oxygen, and: a) Electrons b) Carbon dioxide c) Glucose d) ATP 21. The products of the light reaction that are used in the Calvin cycle are: a) ATP and NADPH b) ATP and O ₂ c) NADPH and O ₂ d) CO ₂ and H ₂ O 22. Photophosphorylation is the synthesis of ATP in the presence of: a) Light b) CO ₂ c) O ₂ d) Water 23. Non-cyclic photophosphorylation involves both photosystems and produces: a) ATP only b) NADPH only c) Both ATP and NADPH d) Sugars	a) 680 nm b) 700 nm c) 650 nm d) 750 nm
a) Protons b) Electrons c) Water d) Carbon dioxide 20. The splitting of water produces protons, oxygen, and: a) Electrons b) Carbon dioxide c) Glucose d) ATP 21. The products of the light reaction that are used in the Calvin cycle are: a) ATP and NADPH b) ATP and O ₂ c) NADPH and O ₂ c) NADPH and O2 d) CO ₂ and H ₂ O 22. Photophosphorylation is the synthesis of ATP in the presence of: a) Light b) CO ₂ c) O ₂ d) Water 23. Non-cyclic photophosphorylation involves both photosystems and produces: a) ATP only b) NADPH only c) Both ATP and NADPH d) Sugars 24. Cyclic photophosphorylation occurs when only PS I is active and produces: a) ATP only b) NADPH only c) Both ATP and NADPH	a) Cytochromes b) RuBisCO c) ATP synthase
a) Electrons b) Carbon dioxide c) Glucose d) ATP 21. The products of the light reaction that are used in the Calvin cycle are: a) ATP and NADPH b) ATP and O ₂ c) NADPH and O ₂ d)CO ₂ and H ₂ O 22. Photophosphorylation is the synthesis of ATP in the presence of: a) Light b) CO ₂ c) O ₂ d) Water 23. Non-cyclic photophosphorylation involves both photosystems and produces: a) ATP only b) NADPH only c) Both ATP and NADPH d) Sugars 24. Cyclic photophosphorylation occurs when only PS I is active and produces: a) ATP only b) NADPH only c) Both ATP and NADPH	a) Protons b) Electrons c) Water
a) ATP and NADPH b) ATP and O ₂ c) NADPH and O ₂ d)CO ₂ and H ₂ O 22. Photophosphorylation is the synthesis of ATP in the presence of: a) Light b) CO ₂ c) O ₂ d) Water 23. Non-cyclic photophosphorylation involves both photosystems and produces: a) ATP only b) NADPH only c) Both ATP and NADPH d) Sugars 24. Cyclic photophosphorylation occurs when only PS I is active and produces: a) ATP only b) NADPH only c) Both ATP and NADPH	a) Electrons b) Carbon dioxide c) Glucose
a) Light b) CO ₂ c) O ₂ d) Water 23. Non-cyclic photophosphorylation involves both photosystems and produces: a) ATP only b) NADPH only c) Both ATP and NADPH d) Sugars 24. Cyclic photophosphorylation occurs when only PS I is active and produces: a) ATP only b) NADPH only c) Both ATP and NADPH	a) ATP and NADPH b) ATP and O_2 c) NADPH and O_2
a) ATP only b) NADPH only c) Both ATP and NADPH d) Sugars 24. Cyclic photophosphorylation occurs when only PS I is active and produces: a) ATP only b) NADPH only c) Both ATP and NADPH	a) Light b) CO ₂ c) O ₂
a) ATP only b) NADPH only c) Both ATP and NADPH	a) ATP only b) NADPH only c) Both ATP and NADPH
	a) ATP only b) NADPH only c) Both ATP and NADPH

25. The chemiosmotic hypothesis explains the synthesis of:

a) ATP b) NADPH

17. The reaction centre in PS II is called P680 because it absorbs light at:

c) Glucose d) O_2
26. The proton gradient across the thylakoid membrane is broken down by protons moving through: a) ATP synthase b) Cytochrome c) RuBisCO d) PEPcase
27. The dark reaction is so called because it: a) Occurs only in the dark b) Does not directly require light c) Is inhibited by light d) Occurs at night
28. The first product of CO ₂ fixation in the Calvin cycle is: a) 3-phosphoglyceric acid b) Oxaloacetic acid c) Ribulose bisphosphate d) Phosphoenol pyruvate
29. The primary CO_2 acceptor in the Calvin cycle is: a) PEP b) RuBP c) PGA d) OAA
30. The enzyme that catalyzes the carboxylation of RuBP is: a) PEPcase b) RuBisCO c) ATP synthase d) Cytochrome
31. For each ${\rm CO_2}$ molecule fixed in the Calvin cycle, the number of ATP and NADPH required is: a) 2 ATP and 2 NADPH b) 3 ATP and 2 NADPH c) 2 ATP and 3 NADPH d) 3 ATP and 3 NADPH
32. To make one molecule of glucose, the Calvin cycle must turn: a) 2 times b) 6 times c) 8 times d) 12 times
33. C4 plants are special because they: a) Have Kranz anatomy b) Tolerate higher temperatures

c) Lack photorespiration

d) All of the above

34. The primaryCO ₂ acceptor in C4 plants is: a) RuBP b) PEP c) PGA d) OAA
35. The enzyme that fixes CO_2 in the mesophyll cells of C4 plants is: a) RuBisCO b) PEPcase c) ATP synthase d) Cytochrome
36. In C4 plants, the Calvin cycle occurs in the:a) Mesophyll cellsb) Bundle sheath cellsc) Epidermal cellsd) Guard cells
37. Photorespiration occurs in: a) C3 plants b) C4 plants c) Both C3 and C4 plants d) Neither
38. RuBisCO can act as both a carboxylase and an oxygenase because it can bind to: a) CO2 and $\rm O_2$ b) CO2 and $\rm N_2$ c) O2 and $\rm H_2O$ d) CO2 and $\rm H_2O$
39. Blackman's Law of Limiting Factors states that the rate of a process is determined by the factor that is: a) At its maximum value b) Nearest to its minimal value c) Always light d) Always temperature
40. The most common limiting factor for photosynthesis is:a) Lightb) Temperaturec) CO2 concentrationd) Water
41. Light saturation for photosynthesis occurs at what percentage of full sunlight?a) 5%b) 10%c) 50%d) 100%
42. C4plants show saturation at a CO_2 concentration of about: a) 180 μ IL ⁻¹ b) 360 μ IL ⁻¹

c) 450 μlL ⁻¹ d) 500 μlL ⁻¹
43. C4 plants have a higher temperature optimum than C3 plants because they:a) Have Kranz anatomyb) Lack photorespirationc) Use PEPcased) All of the above
 44. Water stress affects photosynthesis by: a) Causing stomatal closure b) Directly inhibiting the light reactions c) Denaturing enzymes d) Breaking down chlorophyll
45. The first product of CO2 fixation in C4 plants is: a) PGA b) OAA c) RuBP d) PEP
46. The number of carbon atoms in the primary CO2 acceptor in C3 plants is:a) 3b) 4c) 5d) 6
47. The number of carbon atoms in the primary CO2 fixation product in C4 plants is: a) 3 b) 4 c) 5 d) 6
48. Photorespiration results in the: a) Synthesis of sugars b) Release of CO_2 c) Release of O_2 d) Synthesis of ATP
49. The most abundant enzyme in the world is: a) PEPcase b) ATP synthase c) RuBisCO d) Cytochrome
50. The Hatch and Slack Pathway is associated with: a) C3 plants b) C4 plants c) Photorespiration d) Cyclic photophosphorylation

Answer Key for Set 4

- 1. b) Joseph Priestley
- 2. b) Oxygen
- 3. b) Starch
- 4. b) O₂ evolution
- 5. b) The empirical equation
- 6. b) H₂O
- 7. b) Radioisotopic techniques
- 8. b) Leaves
- 9. b) Membrane system
- 10. c) Both PS I and PS II
- 11. d) Carotenoids
- 12. b) Blue and red regions
- 13. c) Wavelengths
- 14. a) Chlorophyll a
- 15. b) A single chlorophyll a molecule
- 16. b) 700 nm
- 17. a) 680 nm
- 18. a) Cytochromes
- 19. b) Electrons
- 20. a) Electrons
- 21. a) ATP and NADPH
- 22. a) Light
- 23. c) Both ATP and NADPH
- 24. a) ATP only
- 25. a) ATP
- 26. a) ATP synthase
- 27. b) Does not directly require light
- 28. a) 3-phosphoglyceric acid
- 29. b) RuBP
- 30. b) RuBisCO
- 31. b) 3 ATP and 2 NADPH
- 32. b) 6
- 33. d) All of the above
- 34. b) PEP
- 35. b) PEPcase
- 36. b) Bundle sheath cells
- 37. a) C3 plants
- 38. a) CO₂ and O2
- 39. b) Nearest to its minimal value
- 40. c) CO2 concentration
- 41. b) 10%
- 42. b) 360 µlL⁻¹
- 43. d) All of the above
- 44. a) Causing stomatal closure
- 45. b) OAA
- 46. c) 5
- 47. b) 4
- 48. b) Release of CO2
- 49. c) RuBisCO
- 50. b) C4 plants