SET 4 – Mechanical Properties of Solids

1. The property by virtue of which a body opposes deformation is called — (a) Rigidity (b) Elasticity (c) Plasticity (d) Brittleness
2. When a deforming force is removed and the body regains its original shape, the behavi
is —
(a) Elastic
(b) Plastic
(c) Brittle
(d) Flexible
3. Stress is defined as —
(a) Force per unit area
(b) Area per unit force
(c) Force × area (d) Force × displacement
(u) Force > displacement
4. Strain is defined as —
(a) Change in dimension/original dimension
(b) Force/area
(c) Stress × strain
(d) Area × force
5. The unit of stress is —
(a) N/m²
(b) J/m³
(c) N/m
(d) m/s ²
6. The unit of strain is — (a) Dimensionless (b) N/m²

(c) J/m³ (d) m/N

 7. Hooke's law states — (a) Stress ∞ Strain within elastic limit (b) Stress ∞ Strain² (c) Stress ∞ 1/Strain (d) Stress = constant 	
8. The slope of the stress–strain curve gives — (a) Young's modulus (b) Bulk modulus (c) Poisson's ratio (d) Shear modulus	
9. The point up to which Hooke's law is valid is — (a) Proportional limit (b) Elastic limit (c) Yield point (d) Breaking point	
10. The maximum stress up to which the material returns to its original shape is — (a) Elastic limit (b) Yield point (c) Proportional limit (d) Ultimate point	
11. The stress corresponding to permanent deformation is — (a) Yield stress (b) Elastic stress (c) Breaking stress (d) Limiting stress	
12. The stress corresponding to breaking of a material is — (a) Breaking stress (b) Yield stress (c) Limiting stress (d) Critical stress	

13. The slope of the linear part of stress–strain curve(a) Modulus of Elasticity(b) Bulk modulus(c) Modulus of rigidity(d) Poisson's ratio	re is —
14. The work done per unit volume to stretch a wire	is —
(a) ½ × Stress × Strain	
(b) Stress × Strain	
(c) Stress / Strain	
(d) Strain / Stress	
15. If a wire of length <i>L</i> and cross-section <i>A</i> is streto	ched by a force <i>F</i> , the longitudinal stress
is —	
(a) F/A	
(b) A/F	
(c) F/L	
(d) F×L	
16. The ratio of lateral strain to longitudinal strain is(a) Poisson's ratio(b) Bulk modulus(c) Modulus of rigidity(d) Elastic limit	
17. The maximum value of Poisson's ratio is —	
(a) 0.5	
(b) 1	
(c) 0	
(d) 2	
18. The Poisson's ratio for cork is nearly — (a) 0 (b) 0.5 (c) 0.25 (d) 1	

 19. A body is said to be perfectly rigid if — (a) Its deformation is zero (b) It is flexible (c) It has zero mass (d) It has infinite strain 	
20. A perfectly plastic body has — (a) Zero modulus of elasticity (b) Infinite modulus of elasticity (c) Constant modulus	• • •
(d) Finite modulus	
21. The ratio of stress to strain is — (a) Modulus of Elasticity (b) Bulk modulus (c) Shear modulus (d) Poisson's ratio	
22. The unit of Young's modulus is — (a) N/m² (b) N/m³ (c) J/m³ (d) m²/N	
23. The dimensional formula of stress is — (a) [ML ⁻¹ T ⁻²] (b) [MLT ⁻²] (c) [M ⁻¹ L ³ T ⁻²] (d) [M ⁰ L ⁰ T ⁰]	
24. The Young's modulus of steel is approximately — (a) 2 × 10 ¹¹ N/m ² (b) 2 × 10 ⁹ N/m ² (c) 2 × 10 ⁷ N/m ² (d) 2 × 10 ⁵ N/m ²	

25. Steel is more elastic than rubber because —	
(a) Y of steel is greater	
(b) Y of rubber is smaller	
(c) Both (a) and (b)	
(d) None	
26. Bulk modulus is defined as —	
(a) Volume stress / Volume strain	
(b) Stress / Strain	
(c) Shear stress / Shear strain	
(d) Force / Area	
	-6
27. For a fluid, the modulus of rigidity is —	
(a) Zero	
(b) Infinite	
(c) Finite	
(d) None	
28. Bulk modulus of an incompressible liquid is — (a) Infinite (b) Zero (c) Small (d) Constant	
29. The SI unit of bulk modulus is —	
(a) N/m²	
(b) J/m³	
(c) N/m³	
(d) m²/N	
20. The relationship between V.V. and C.ia	
30. The relationship between Y, K, and G is — (a) Y = 9KG / (3K + G)	
(a) $Y = 3KG / (3K + G)$ (b) $Y = 3KG / (3K + G)$	
(b) $Y = 3KG / (3K + G)$ (c) $Y = 2KG / (3K - G)$	
(d) Y = K + G	
(-,	

31. The relationship among Y, K, and Poisson's ratio (σ) is —			
(a) $Y = 3K(1 - 2\sigma)$			
(b) $Y = K(1 - \sigma)$			
$(c) Y = 9K(1 + \sigma)$			
$(d) Y = 2K(1 + \sigma)$			
20. The maying at reas a material can bear is called			
32. The maximum stress a material can bear is called —			
(a) Breaking stress			
(b) Yield stress			
(c) Elastic stress (d) Ultimate stress			
(u) Oilimate stress			
	-6		
33. The ratio of change in volume to original volume is —			
(a) Volumetric strain			
(b) Shear strain			
(c) Longitudinal strain			
(d) Lateral strain			
34. For gases, bulk modulus is — (a) Very small (b) Very large (c) Infinite (d) Constant			
35. The area under the stress–strain curve represents —			
(a) Energy stored per unit volume			
(b) Force per unit area			
(c) Pressure per unit volume			
(d) Work per unit time			
36. The Poisson's ratio of steel is about — (a) 0.3			
(b) 0.5			
(c) 0			
(d) 1			

37. The Poisson's ratio for an incompressible material is —
(a) 0.5
(b) 0
(c) 0.25
(d) 1
38. The modulus of rigidity is also known as —
(a) Shear modulus
(b) Bulk modulus
(c) Tangential modulus
(d) Elastic modulus
39. Rubber is less elastic because —
(a) It has small Young's modulus
(b) It stretches more for the same stress
(c) It obeys Hooke's law poorly
(d) All of these
 40. Elastic potential energy per unit volume is given by — (a) ½ × Stress × Strain (b) Stress / Strain (c) Strain / Stress (d) Stress × Strain
41. The work done per unit volume is maximum at —
(a) Breaking point
(b) Elastic limit
(c) Yield point
(d) Proportional limit
42. The slope of the linear region of the stress–strain curve gives —
(a) Young's modulus
(b) Shear modulus
(c) Bulk modulus
(d) Poisson's ratio

 43. The region beyond the elastic limit is called — (a) Plastic region (b) Elastic region (c) Proportional region (d) Yield region 	
44. A perfectly rigid body has — (a) Infinite Young's modulus (b) Zero Young's modulus (c) Finite modulus (d) Constant stress	
45. A perfectly plastic body has — (a) Zero modulus of elasticity (b) Infinite modulus of elasticity (c) Finite modulus (d) None	
46. Stress and strain are — (a) Directly proportional within elastic limit (b) Inversely proportional (c) Equal always (d) Independent	
47. The elastic limit of steel is — (a) High (b) Low (c) Zero (d) Same as copper	
48. The stress–strain curve for brittle material is — (a) Steep and short (b) Flat and long (c) Parabolic (d) Linear	

- **49.** The slope of stress–strain curve beyond elastic limit —
- (a) Decreases
- (b) Increases
- (c) Constant
- (d) Becomes zero
- **50.** For a small strain, stress is proportional to —
- (a) Strain
- (b) 1/Strain
- (c) Strain²
- (d) Constant

Answer Key – SET 4

- 1 (a) 2 (a) 3 (a) 4 (a) 5 (a) 6 (a) 7 (a) 8 (a) 9 (a) 10 (a) 11 (a) 12 (a) 13 (a) 14 (a) 15 (a) 16 (a) 17 (a) 18 (a) 19 (a) 20 (a) 21 (a) 22 (a) 23 (a) 24 (a) 25 (c) 26 (a) 27 (a) 28 (a) 29 (a) 30 (a)
- 31 (a) 32 (a) 33 (a) 34 (a) 35 (a) 36 (a) 37 (a) 38 (a) 39 (d) 40 (a)
- 41 (a) 42 (a) 43 (a) 44 (a) 45 (a) 46 (a) 47 (a) 48 (a) 49 (a) 50 (a)