

वस्तुनिष्ठ प्रश्न

1) According to Huygens, the waves of light are-

- (a) Mechanical, longitudinal.
- (b) Mechanical, transverse.
- (c) Electromagnetic.
- (d) Mechanical, spherical.

हाइगेन्स के अनुसार प्रकाश की तरंगें होती हैं-

- (a) यांत्रिक, अनुदैर्घ्य।
- (b) यांत्रिक, अनुप्रस्थ।
- (c) विद्युतचुंबकीय।
- (d) यांत्रिक, गोलीय।

Ans-

- (a)

2) The concept of secondary wavelets was given by-

- (a) Fresnel
- (b) Newton
- (c) Huygens
- (d) Maxwell

द्वितीयक तरंगिकाओं की अवधारणा दी थी-

- (a) फ्रेनेल ने
- (b) न्यूटन ने
- (c) हाइगेन्स ने
- (d) मैक्सवेल ने।

Ans-

- (c)

3) Two sources of waves are said to be in coherent if-

- (a) The wavefronts generated by both should be of the same shape.
- (b) Both produce waves of the same wavelength.
- (c) Both produce waves of the same velocity.
- (d) Both produce waves of the same wavelength having a constant phase difference.

तरंगों के दो स्रोत कला संबंध कहे जाते हैं, यदि-

- (a) दोनों से उत्पन्न तरंगाग्र समान आकृति के हो।
- (b) दोनों समान तरंगदैर्घ्य की तरंगें उत्पन्न करते हों।
- (c) दोनों समान वेग की तरंगें उत्पन्न करते हों।
- (d) दोनों समान तरंगदैर्घ्य की तरंगें, जिनमें नियत कलांतर रहता है, उत्पन्न करते हों।

Ans-

- (d)

4) In the phenomenon of interference of waves -

- (a) There is a loss of energy
- (b) There is a gain of energy
- (c) There is no loss of energy, no gain of energy and only redistribution of energy.
- (d) Nothing can be said about energy.

तरंगों के व्यतिकरण की घटना में -

- (a) ऊर्जा का नुकसान होता है
- (b) ऊर्जा का लाभ होता है
- (c) ऊर्जा का कोई नुकसान नहीं है ऊर्जा का कोई लाभ नहीं है और केवल ऊर्जा का पुनर्वितरण है।
- (d) ऊर्जा के बारे में कुछ नहीं कहा जा सकता है।

- (c)

5)

Two waves whose intensities are in the ratio 9:1 produce interference. The ratio of maximum and minimum intensities will be-

- (a) 10:8
- (b) 9:1
- (c) 4:1
- (d) 2:1

दो तरंगें जिनकी तीव्रताओं का अनुपात 9:1 है, व्यतिकरण उत्पन्न करती है। अधिकतम तथा न्यूनतम तीव्रताओं का अनुपात होगा-

- (a) 10:8
- (b) 9:1
- (c) 4:1
- (d) 2:1
- (c)

If the wavelength of light is doubled in Young's experiment, then the width of the fringe-

- (a) will remain the same
- (b) will be doubled
- (c) will be halved
- (d) will be quadrupled

यंग के प्रयोग में यदि प्रकाश की तरंगदैर्घ्य दोगुनी कर दी जाए तो, तो फ्रिंज की चौड़ाई-

- (a) वही रहेगी
- (b) दोगुनी हो जाएगी
- (c) आधी रह जाएगी
- (d) चार गुनी हो जाएगी।
- (b)

Young's double slit experiment uses a monochromatic source of light. The shape of the interference fringes formed on the screen is-

- (a) Parabola
- (b) Straight line
- (c) Circle
- (d) Hyperbola.

यंग का डबल स्लिट प्रयोग प्रकाश के एकवर्णी स्रोत का उपयोग करता है। पर्दे पर बनने वाली व्यतिकरण फ्रिंजों की आकृति होती है-

- (a) परवलय
- (b) सीधी रेखा
- (c) वृत्त
- (d) अतिपरवलय।
- (d)

The size of the obstacle for the diffraction of light-

- (a) be much larger than the wavelength of light.
- (b) be much smaller than the wavelength of light.
- (c) be of the order of wavelength of light.
- (d) anything can happen.

प्रकाश के विवर्तन के लिए अवरोधक का आकार-

- (a) प्रकाश की तरंगदैर्घ्य से बहुत बड़ा होना चाहिए।
- (b) प्रकाश की तरंगदैर्घ्य से बहुत छोटा होना चाहिए।
- (c) प्रकाश की तरंगदैर्घ्य की कोटि का होना चाहिए।
- (d) कुछ भी हो सकता है।
- (c)

Subjective Questions/विषयनिष्ठ प्रश्न

- | | | |
|---------|---|--|
| 1) | What is fringe width?
फ्रिंज चौड़ाई क्या है? | 3. The width of the fringes in interference is equal.
4. The sources are referred to as interference sources if the number of sources is as few as two sources |
| Ans- | The distance between successive bright or dark fringes is called fringe width. | Diffraction |
| उत्तर - | उत्तरोत्तर दीप्त या अदीप्त फ्रिंजों के बीच की दूरी को फ्रिंज चौड़ाई कहते हैं। | 1. Diffraction, on the other hand, can be termed as secondary waves that emerge from the different parts of the same wave.
2. The contrast between maxima and minima is poor.
3. The width of the fringes is not equal in diffraction.
4. If the number of sources is more than two the sources are referred to as diffraction sources. |
| 2) | What type of source is used in Young's double slit experiment?
यंग के द्विलोहितीय प्रयोग में किस प्रकार के स्रोत का प्रयोग किया जाता है? | उत्तर - विवर्तन और व्यतिकरण के बीच अंतर
व्यतिकरण |
| Ans- | In Young's double slit experiment, a coherent source is used. | 1. व्यतिकरण को दो अलग-अलग स्रोतों से निकलने वाली तरंगों के रूप में परिभाषित किया जा सकता है, जो अलग-अलग तरंगों का निर्माण करती है।
2. मैक्रिस्मा और मिनिमा के बीच का अंतर बहुत अच्छा है।
3. व्यतिकरण में फ्रिंजों की चौड़ाई बराबर होती है।
4. यदि स्रोतों की संख्या दो स्रोतों जितनी कम है तो स्रोतों को व्यतिकरण स्रोत कहा जाता है। |
| उत्तर - | यंग के डबल स्लिट प्रयोग में सुसंगत स्रोत का उपयोग किया जाता है। | विवर्तन |
| 3) | What is interference?
व्यतिकरण क्या है? | 4) |
| Ans- | Interference is the phenomenon in which two waves superimpose to form a resultant wave of lower, higher or equal amplitude. | How many types of light interference are there?
प्रकाश व्यतिकरण कितने प्रकार के होते हैं? |
| उत्तर - | व्यतिकरण वह परिघटना है जिसमें दो तरंगों अद्यारोपित होकर निम्र, उच्च या समान आयाम की परिणामी तरंग बनाती हैं। | Ans- |
| Ans- | There are the following types of light interference: | There are the following types of light interference: |
| उत्तर - | <ul style="list-style-type: none"> constructive interference destructive interference | <ul style="list-style-type: none"> constructive interference destructive interference |
| | निम्र प्रकार के प्रकाश व्यतिकरण हैं: | |
| | <ul style="list-style-type: none"> रचनात्मक व्यतिकरण विनाशी व्यतिकरण | |

- 8) The ratio of maximum and minimum intensities in an interference pattern is 36:1. What is the ratio of the

amplitudes of the two interfering waves?

एक व्यतिकरण पैटर्न में अधिकतम और न्यूनतम तीव्रता का अनुपात 36:1 है। दो व्यतिकारी तरंगों के आयामों का अनुपात क्या है?

Ans-

Given:

$$\frac{I_{\max}}{I_{\min}} = \frac{36}{1}$$

$$\frac{A_1}{A_2} = ?$$

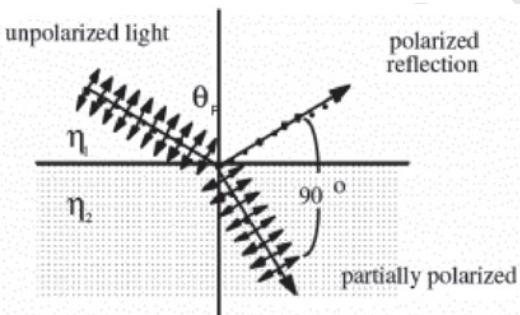
$$\frac{I_{\max}}{I_{\min}} = \frac{(A_1 + A_2)^2}{(A_1 - A_2)^2} = \frac{36}{1}$$

$$\therefore \frac{A_1 + A_2}{A_1 - A_2} = \frac{6}{1}$$

$$1(A_1 + A_2) = 6(A_1 - A_2)$$

$$7A_2 = 5A_1$$

$$\therefore \frac{A_1}{A_2} = \frac{7}{5}$$


$$A_1:A_2 :: 7:5$$

9) What is Brewster's law?

ब्रूस्टर का नियम क्या है?

Ans- Brewster's Law

If the angle of incidence of which the reflected light is completely plane polarized is called polarizing angle or Brewster's angle.

Polarization by Reflection at Brewster's Angle

When an unpolarized light incident at a polarizing angle, i_p on an interface separating air from a medium of refractive index, then the reflected light is fully polarized if

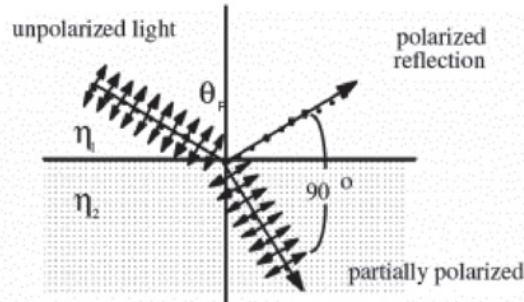
$$\mu = \tan i_p$$

According to Snell's law

$$\mu = \sin i / \sin r$$

Basically reflected rays should be perpendicular to refracted rays. In that case only $i = i_p$ & $r = 90 - i_p$.

$$i = i_p$$


$$r = 90 - i_p$$

$$\mu = \sin i / \sin(90 - i_p)$$

$$\mu = \tan i_p$$

उत्तर - ब्रूस्टर का नियम

यदि वह आपतन कोण जिसका परावर्तित प्रकाश पूरी तरह से समतल ध्रुवित है, ध्रुवीकरण कोण या ब्रूस्टर का कोण कहलाता है।

Polarization by Reflection at Brewster's Angle

जब एक ध्रुवीकृत प्रकाश अपवर्तक सूचकांक के माध्यम से हवा को अलग करने वाले एक इंटरफ़ेस पर एक ध्रुवीकरण कोण i_p पर आपतित करता है, तो परावर्तित प्रकाश पूरी तरह से ध्रुवीकृत होता है यदि

$$\mu = \tan i_p$$

स्लैल के नियम के अनुसार

$$\mu = \sin i / \sin r$$

मूल रूप से परावर्तित किरण अपवर्तित किरण के लंबवत हीनी चाहिए। उस स्थिति में केवल $i = i_p$ & $r = 90 - i_p$.

$$i = i_p$$

$$r = 90 - i_p$$

$$\mu = \sin i_p / \sin(90 - i_p)$$

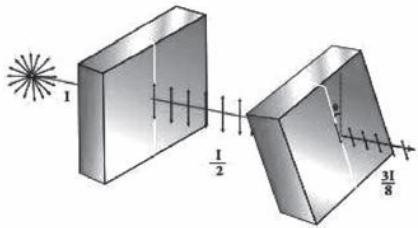
$$\mu = \tan i_p$$

Two polaroids are kept with their transmission axes inclined at 30°. Unpolarised light of intensity I falls on the first polaroid. Find out the intensity of light emerging from the second polaroid.

दो पोलरैड़िड्स को उनके संचरण अक्षों के साथ 30° पर झुका हुआ रखा गया है। तीव्रता का अध्यवृत्त प्रकाश सर्वप्रथम पोलरैड़िड पर पड़ता है। दूसरे पोलरैड़िड से निकलने वाले प्रकाश की तीव्रता ज्ञात कीजिए।

Ans -

As the intensity of the unpolarised light falling on the first polaroid is I , the intensity of polarized light emerging will be, $I_0 = (I/2)$.

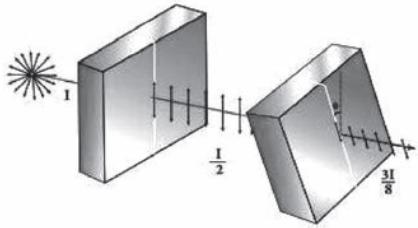

Let I' be the intensity of light emerging from the second polaroid.

$$\text{Malus' law, } I' = I_0 \cos^2 \theta$$

Substituting,

$$I' = \left(\frac{I}{2}\right) \cos^2(30^\circ) = \left(\frac{I}{2}\right) \left(\frac{\sqrt{3}}{2}\right)^2 = I \frac{3}{8}$$

$$I' = \left(\frac{3}{8}\right) I$$



- उत्तर - चैंकि पहले पोलरॉइड पर पड़ने वाले अधुरित प्रकाश की तीव्रता I है, इसलिए निकलने वाले ध्रुवीकृत प्रकाश की तीव्रता $I_0 = (I/2)$ होगी। दूसरे पोलरॉइड से निकलने वाले प्रकाश की तीव्रता I' होने दें। मैलस का नियम, $I' = I_0 \cos^2 \theta$

प्रतिस्थापन,

$$I' = \left(\frac{I}{2}\right) \cos^2(30^\circ) = \left(\frac{I}{2}\right) \left(\frac{\sqrt{3}}{2}\right)^2 = I \frac{3}{8}$$

$$I' = \left(\frac{3}{8}\right) I$$

- 11) **Two polaroids are kept crossed (transmission axes at 90°) to each other.**

- (i) What will be the intensity of the light coming out from the second polaroid when an unpolarised light of intensity I falls on the first polaroid?
(ii) What will be the intensity of light coming out from the second polaroid if a third polaroid is kept at 45° inclination to both of them.

दो पोलरॉइड्स को एक दूसरे से क्रॉस (90° पर ट्रांसमिशन अक्ष) रखा जाता है।

- (i) दूसरे पोलरॉइड से निकलने वाले प्रकाश की तीव्रता क्या होगी जब । तीव्रता का एक अध्रुवीकृत प्रकाश पहले पोलरॉइड पर पड़ता है?
(ii) दूसरे पोलरॉइड से निकलने वाले प्रकाश की तीव्रता क्या होगी यदि एक तीसरा पोलरॉइड इन दोनों से 45° झुकाव पर रखा जाए।

- Ans- (i) As the intensity of the unpolarised light falling on the first polaroid is I , the intensity of polarized light emerging from it will be $I_0 = (I/2)$.

Let I' be the intensity of light emerging from the second polaroid.

$$\text{Malus' law, } I' = I_0 \cos^2 \theta$$

Here θ is 90° as the transmission axes are

perpendicular to each other.

Substituting,

$$I_0 = (I/2) \cos^2(90^\circ) = 0$$

$$[\because \cos(90^\circ) = 0]$$

No light comes out from the second polaroid.

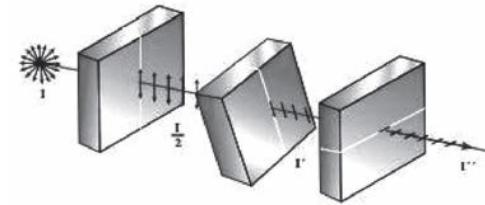
- (ii) Let the first polaroid be P_1 and the second polaroid be P_2 . They are oriented at 90°. The third polaroid P_3 is introduced between them at 45°. Let I' be the intensity of light emerging from P_3 .

Angle between P_1 and P_3 is 45°. The intensity of light coming out from P_3 is,

$$I' = I_0 \cos^2 \theta$$

Substituting,

$$I' = \left(\frac{I}{2}\right) \cos^2(45^\circ) = \left(\frac{I}{2}\right) \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{I}{4}; I' = \frac{I}{4}$$


Angle between P_3 and P_2 is 45°. Let I'' is the intensity of light coming out from P_2 $I'' = I' \cos^2 \theta$

Here, the intensity of polarized light existing between P_3 and P_2 is $1/4$.

Substituting,

$$I'' = \left(\frac{I}{4}\right) \cos^2(45^\circ) = \left(\frac{I}{4}\right) \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{I}{8}$$

$$I'' = \frac{I}{8}$$

उत्तर -

- (i) चैंकि पहले पोलरॉइड पर पड़ने वाले अधुरित प्रकाश की तीव्रता I है, इससे निकलने वाले ध्रुवीकृत प्रकाश की तीव्रता $I_0 = (I/2)$ होगी।

मान लीजिए I' दूसरे पोलरॉइड से निकलने वाले प्रकाश की तीव्रता है।

$$\text{मालुस का नियम, } I' = I_0 \cos^2 \theta$$

यहाँ $\theta = 90^\circ$ है क्योंकि संचरण अक्ष एक दूसरे के लंबवत हैं।

प्रतिस्थापन,

$$I_0 = (I/2) \cos^2(90^\circ) = 0$$

$$[\because \cos(90^\circ) = 0]$$

दूसरे पोलरॉइड से कोई प्रकाश नहीं निकलता है।

- (ii) माना पहला पोलरॉइड P_1 है और दूसरा पोलरॉइड P_2 है। वे 90° पर उम्मुक्ष हैं। तीसरा पोलरॉइड P_3 उनके बीच 45° पर ऐश किया जाता है। मान लीजिए I P_3 से निकलने वाले प्रकाश की तीव्रता है।

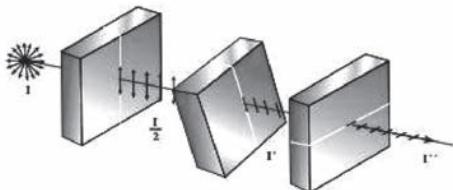
P_1 और P_3 के बीच का कोण 45° है। P_3 से निकलने वाले प्रकाश की तीव्रता $I' = I_0 \cos^2 \theta$ है

प्रतिस्थापन,

$$I' = \left(\frac{I}{2}\right) \cos^2(45^\circ) = \left(\frac{I}{2}\right) \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{I}{4}; I' = \frac{I}{4}$$

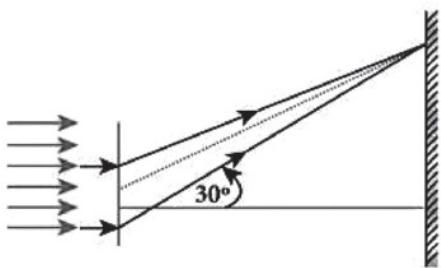
P_3 और P_2 के बीच का कोण 45° है। मान लीजिए I'' P_2 से

निकलने वाले प्रकाश की तीव्रता


$$I'' = I' \cos^2 \theta$$

यहाँ, P_3 और P_2 के बीच विद्यमान ध्रुवीकृत प्रकाश की तीव्रता $1/4$ है।

प्रतिस्थापन


$$I'' = \left(\frac{I}{4}\right) \cos^2(45^\circ) = \left(\frac{I}{4}\right) \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{I}{8}$$

$$I'' = \frac{I}{8}$$

- 12) A monochromatic light of wavelength 5000 Å passes through a single slit producing diffraction pattern for the central maximum as shown in the figure. Determine the width of the slit.

5000 Å तरंगदैर्घ्य का एक मोनोक्रोमेटिक प्रकाश एकल स्लिट से गुजरता है जो केंद्रीय अधिकतम के लिए विवर्तन पैटर्न बनाता है जैसा कि चित्र में दिखाया गया है। स्लिट की चौड़ाई निर्धारित करें।

Ans- $\lambda = 5000 \text{ \AA} = 5000 \times 10^{-10} \text{ m}; \sin 30^\circ = 0.5; n = 1; a = ?$

Equation for diffraction minimum is, $a \sin \theta = n\lambda$

The central maximum is spread up to the first minimum. Hence, $n = 1$

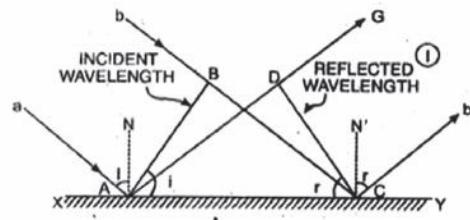
Rewriting, $a = \lambda / \sin \theta$

Substituting, $a = 5000 \times 10^{-10} / 0.5$

$a = 1 \times 10^{-6} \text{ m} = 0.001 \times 10^{-3} \text{ m} = 0.001 \text{ mm}$

$\lambda = 5000 \text{ \AA} = 5000 \times 10^{-10} \text{ m}; \sin 30^\circ = 0.5; n = 1; a = ?$

- उत्तर - न्यूनतम विवर्तन के लिए समीकरण है, $a \sin \theta = n\lambda$
केंद्रीय अधिकतम पहले न्यूनतम तक फैला हुआ है। इसलिए, $n = 1$
पुनर्लेखन, $a = \lambda / \sin \theta$

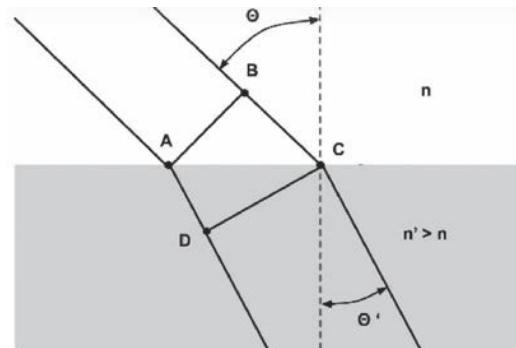

प्रतिस्थापित करना, $a = 5000 \times 10^{-10} / 0.5$

$a = 1 \times 10^{-6} \text{ m} = 0.001 \times 10^{-3} \text{ m} = 0.001 \text{ mm}$

- 13) हाइगेन्स की तरंग सिद्धान्त लिखिए। तथा इससे परावर्तन और अपवर्तन के नियमों को व्युत्पत्ति कीजिये।

Write the wave theory of Huygens. And derive the laws of reflection and refraction from it.

- Ans- Huygens' Principle states that every point on a wavefront is the source of wavelets that spread out in the forward direction at the same speed as the wave itself


Huygens' Principle can be applied to prove the laws of reflection. The above figure demonstrates the incident ray being reflected by a reflecting surface.

aA represents the wavefront incident in a reflecting mirror XY with an angle of incidence i . Every point on aA acts as a source of a secondary wavelet. As mentioned by Huygens' principle, the rays will take equal time to cover the distance between A to D and C to B . Therefore, the angle of incidence will be equal to the angle of reflection.

This proves the first law of reflection. The direction of propagation of the secondary wavelets is also the direction of propagation of their primary wave sources.

It is also observed that the incident ray and the reflected ray lie on opposite sides of the normal. The normal is perpendicular to the reflecting surface and originates at the point of incidence. The normal, incident ray, and reflected ray lie on the same plane, and hence, the second law of reflection is proven.

Therefore, both the laws of reflection can be analyzed through Huygens' Principle.

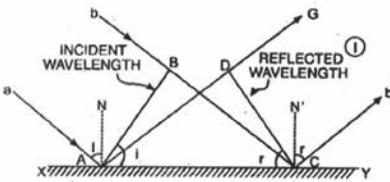
Huygens' Principle can help us prove the laws of refraction with the help of the above diagram.

Considering a wavefront BC incident on the surface, we evaluate that the incident ray has a velocity of V_1 and the refracted ray AD has a velocity of V_2 .

Since Huygens' Principle states that despite differences in density, the time taken by the waves to travel will be the same, let's assume the time taken is t .

Therefore, distance $BC = V_1 t$ and $AD = V_2 t$.

Considering the triangles ABC and ADC , we get:

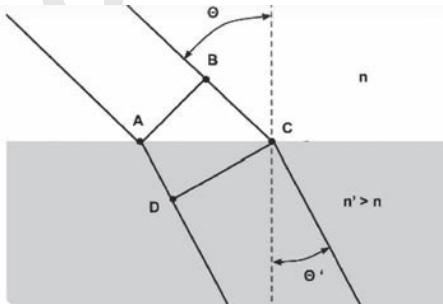

$$\begin{aligned} \frac{\sin i}{\sin r} &= \frac{BC}{AC} : \frac{AD}{AC} \\ &= \frac{BC}{AD} \\ &= \frac{V_1 t}{V_2 t} \\ &= \frac{V_1}{V_2} \\ &= \mu \end{aligned}$$

Here, μ is a constant. It represents the refractive index of the medium through which the light rays are traveling. Another keen observation is that the incident and refracted wavefront lie on the same plane as the normal. This proves the 2nd law of refraction.

The refractive index is also calculated as the ratio of the velocity of light in a vacuum or air to the velocity of light in another medium.

Hence, Snell's law of refraction is proved via the application of Huygens' Principle. This proves the first law of refraction.

उत्तर - हायगेन्स का सिद्धांत कहता है कि तरंग के सामने का प्रत्येक बिंदु तरंगिकाओं का स्रोत है जो आगे की दिशा में उसी गति से फैलती है जैसे तरंग स्वयं


ह्यूजेंस के सिद्धांत को प्रतिबिंब के नियमों को साबित करने के लिए लागू किया जा सकता है। उपरोक्त चित्र एक परावर्तक सतह द्वारा आपतित किरण के परावर्तित होने को प्रदर्शित करता है।

aA एक परावर्तक दर्पण XY में आपतन कोण i के साथ तरंगाग्र आपतित को निरूपित करता है। एए पर प्रत्येक बिंदु द्वितीयक तरंगिका के स्रोत के रूप में कार्य करता है। जैसा कि हाइजेन्स के सिद्धांत द्वारा उल्लेख किया गया है, किरणों को A से D और C से B के बीच की दूरी को कवर करने में समान समय लगेगा। इसलिए, आपतन कोण परावर्तन कोण के बराबर होगा।

इससे परावर्तन का प्रथम नियम सिद्ध होता है। द्वितीयक तरंगिकाओं के संचरण की दिशा उनके प्राथमिक तरंग स्रोतों के संचरण की दिशा भी होती है।

यह भी देखा गया है कि आपतित किरण और परावर्तित किरण अभिलंब के विपरीत दिशा में स्थित हैं। अभिलंब परावर्तक सतह के लंबवत होता है और आपतन बिंदु पर उत्पन्न होता है। अभिलंब, आपतित किरण और परावर्तित किरण एक ही तल पर स्थित होते हैं, और इसलिए, परावर्तन का दूसरा नियम सिद्ध होता है।

इसलिए, परावर्तन के दोनों नियमों का विश्लेषण हायगेन्स के सिद्धांत के माध्यम से किया जा सकता है।

हायगेन्स का सिद्धांत उपरोक्त आरेख की सहायता से अपवर्तन के नियमों को सिद्ध करने में हमारी सहायता कर सकता है।

सतह पर तरंगाग्र BC आपतित को ध्यान में रखते हुए, हम यह मूल्यांकन करते हैं कि आपतित किरण का वेग V_1 है और अपवर्तित किरण AD का वेग V_2 है।

चूंकि ह्यूजेंस का सिद्धांत कहता है कि घनत्व में अंतर के बावजूद, तरंगों द्वारा यात्रा करने में लगने वाला समय समान

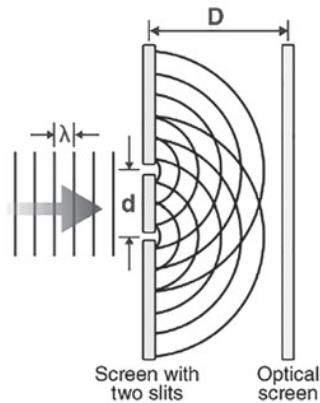
होगा, मान लें कि लिया गया समय t है।

अतः दूरी BC = $V_1 t$ और AD = $V_2 t$

$$\begin{aligned} \frac{\sin i}{\sin r} &= \frac{BC}{AC} \div \frac{AC}{AC} \\ &= \frac{BC}{AD} \\ &= \frac{V_1 t}{V_2 t} \\ &= \frac{V_1}{V_2} \\ &= \mu \end{aligned}$$

यहाँ, μ एक अचर है। यह उस माध्यम के अपवर्तनांक का प्रतिनिधित्व करता है जिसके माध्यम से प्रकाश किरणें यात्रा कर रही हैं। एक और गहन अवलोकन यह है कि आपतित और अपवर्तित तरंगाग्र अभिलंब के समान तल पर स्थित होते हैं। यह अपवर्तन का दूसरा नियम सिद्ध करता है।

अपवर्तनांक की गणना निर्वात या वायु में प्रकाश के वेग के अनुपात से दूसरे माध्यम में प्रकाश के वेग के अनुपात के रूप में भी की जाती है।


इसलिए, श्लेष के अपवर्तन के नियम को हायगेन्स के सिद्धांत के आवेदन के माध्यम से सिद्ध किया गया है। इससे अपवर्तन का प्रथम नियम सिद्ध होता है।

14)

Explain the principle of Young's double slit experiment for Young's interference and derive the formula for the width of the interference fringes.

यंग के व्यतिकरण के लिए यंग के द्वी- छिद्र प्रयोग का सिद्धांत समझाए तथा व्यतिकरण फ्रेन्जों की चौड़ाई के लिए सूत्र प्राप्त कीजिये।

Young's double-slit experiment uses two coherent sources of light placed at a small distance apart. Usually, only a few orders of magnitude greater than the wavelength of light are used. Young's double-slit experiment helped in understanding the wave theory of light, which is explained with the help of a diagram.

Derivation of Young's Double Slit Experiment-

Consider a monochromatic light source 's' kept at a considerable distance from two slits s_1 and s_2 . s is equidistant from s_1 and s_2 . s_1 and s_2 behave as two coherent sources as both are derived from s .

The light passes through these slits and falls on a screen which is at a distance 'D' from the position of slits s_1 and s_2 . 'd' is the separation between two slits.

If s_1 is open and s_2 is closed, the screen opposite to s_1 is closed, and only the screen opposite to s_2 is illuminated.

The interference patterns appear only when both slits s_1 and s_2 are open.

When the slit separation (d) and the screen distance (D) are kept unchanged, the light waves from s_1 and s_2 must travel different distances to reach P . This means that in Young's double slit experiment, the path difference between the two light waves is from s_1 and s_2 .

In Young's double slit experiment

$D \gg d$: Since $D \gg d$, the two light rays are considered parallel.

$d/\lambda \gg 1$: Often, d is a fraction of a millimeter, and λ is a fraction of a micrometer for visible light.

Under these conditions, θ is small. Thus, we can use the approximation $\sin \theta = \tan \theta \approx \theta = \lambda/d$.

\therefore path difference, $\Delta z = \lambda/d$

It is the path difference between two waves meeting at a point on the screen. Because of this path difference in Young's double-slit experiment, some points on the screen are bright, and some points are dark.

We now discuss the position of these light, dark fringes and fringe widths.

Position of fringes in Young's double slit experiment

bright edge position

To form the maximum intensity or bright fringe at P

path difference, $\Delta z = n\lambda$ ($n = 0, \pm 1, \pm 2, \dots$)

i.e., $x/d/D = n\lambda$

either

$x = n\lambda D/d$

The distance of the n^{th} bright fringe from the center is

$x_n = n\lambda D/d$

Similarly, the distance of $(n-1)^{\text{th}}$ bright fringe from the center is

$x_{(n-1)} = (n-1)\lambda D/d$

Fringe width, $\beta = x_n - x_{(n-1)} = n\lambda D/d - (n-1)\lambda D/d = \lambda D/d$

($n = 0, \pm 1, \pm 2, \dots$)

dark fringe position

For the minimum intensity or dark fringe formed at P ,

Path difference, $\Delta z = (2n+1)(\lambda/2)$ ($n = 0, \pm 1, \pm 2, \dots$)

i.e., $x = (2n+1)\lambda D/2d$

The distance of the n^{th} dark fringe from the center is

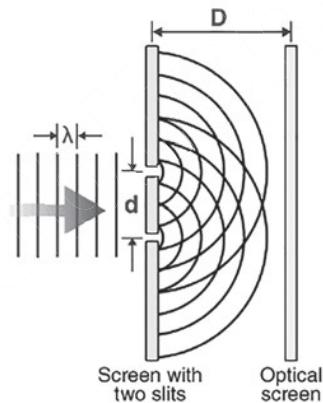
$x_n = (2n+1)\lambda D/2d$

Similarly, the distance of $(n-1)^{\text{th}}$ bright fringe from the center is

$x_{(n-1)} = (2(n-1)+1)\lambda D/2d$

Fringe width, $\beta = x_n - x_{(n-1)} = (2n+1)\lambda D/2d - (2(n-1)+1)\lambda D/2d = \lambda D/d$

($n = 0, \pm 1, \pm 2, \dots$)

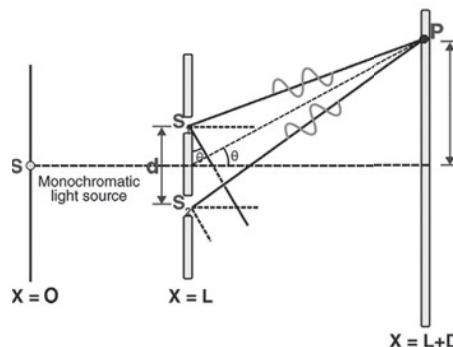

fringe width

The distance between two adjacent bright (or dark) fringes is called the fringe width.

$\beta = \lambda D/d$

उत्तर -

यंग का डबल-स्लिट प्रयोग थोड़ी दूरी पर रखे प्रकाश के दो सुसंगत स्रोतों का उपयोग करता है। आम तौर पर, प्रकाश की तरंग दैर्घ्य से अधिक परिमाण के केवल कुछ क्रमों का उपयोग किया जाता है। यंग के डबल-स्लिट प्रयोग ने प्रकाश के तरंग सिद्धांत को समझने में मदद की, जिसे आरेख की सहायता से समझाया गया है।



यंग के डबल स्लिट प्रयोग की व्युत्पत्ति-

दो स्लिटों, और s_1 से काफी दूरी पर रखे एकवर्णी प्रकाश स्रोत 's' पर विचार करें। s_1 और s_2 से समदूरस्थ हैं। s_1 और s_2 दो सुसंगत स्रोतों के रूप में व्यवहार करते हैं क्योंकि दोनों ही s से व्युत्पन्न हैं।

प्रकाश इन स्लिट्स से होकर गुजरता है और एक स्क्रीन पर गिरता है जो स्लिट्स s_1 और s_2 की स्थिति से 'D' की दूरी पर है। 'd' दो स्लिट्स के बीच की दूरी है।

यदि s_1 खुला है और s_2 बंद है, तो s_1 के विपरीत स्क्रीन बंद है, और केवल s_2 के विपरीत स्क्रीन प्रकाशित है। व्यतिकरण प्रतिरूप तभी प्रकट होता है जब दोनों रेखाओं खुले हों।

जब स्लिट अलगाव (d) और स्क्रीन दूरी (D) को अपरिवर्तित रखा जाता है, तो P तक पहुंचने के लिए s_1 और s_2 से प्रकाश तरंगों को अलग-अलग दूरी तय करनी चाहिए। इसका तात्पर्य है कि यंग के द्विजिरी प्रयोग में s_1 और s_2 से दो प्रकाश तरंगों के बीच पथांतर है।

यंग के डबल स्लिट प्रयोग में

$D \gg d$: चूंकि $D \gg d$, दो प्रकाश किरणों को समानांतर माना जाता है।

$d/\lambda \gg 1$: अक्सर, d एक मिलीमीटर का अंश होता है, और λ दृश्य प्रकाश के लिए माइक्रोमीटर का एक अंश होता है।

इन शर्तों के तहत, θ छोटा है। इस प्रकार, हम सन्त्रिक्षित $\sin \theta = \tan \theta = \theta = \lambda/d$ का उपयोग कर सकते हैं।

\therefore पथांतर, $\Delta z = \lambda/d$

यह स्क्रीन पर किसी बिंदु पर मिलने वाली दो तरंगों के बीच का पथांतर है। यंग के डबल-स्लिट प्रयोग में इस पथ अंतर के कारण, स्क्रीन पर कुछ बिंदु चमकीले होते हैं, और कुछ बिंदु गहरे रंग के होते हैं।

अब हम इन प्रकाश, अदीप्त फ्रिजों और फ्रिज चौड़ाई की स्थिति पर चर्चा करेंगे।

यंग के डबल स्लिट प्रयोग में फ्रिजों की स्थिति चमकीले किनारों की स्थिति P पर अधिकतम तीव्रता या दीप्त फ्रिज बनने के लिए पथ अंतर, $\Delta z = n\lambda$ ($n = 0, \pm 1, \pm 2, \dots$)

यानी, $xd/D = n\lambda$

या

$$x = n\lambda D / d$$

केंद्र से n वें दीप्त फ्रिज की दूरी है

$$x_n = n\lambda D / d$$

इसी प्रकार केंद्र से $(n-1)$ वें दीप्त फ्रिज की दूरी है

$$x_{(n-1)} = (n-1)\lambda D / d$$

$$\text{फ्रिज चौड़ाई, } \beta = xn - x_{(n-1)} = n\lambda D/d - (n-1)\lambda D/d = \lambda D/d$$

$$(n = 0, \pm 1, \pm 2, \dots)$$

डार्क फ्रिज की स्थिति

P पर बनने वाली चूनतम तीव्रता या अदीप्त फ्रिज के लिए, पथ अंतर, $\Delta z = (2n + 1)(\lambda/2)$ ($n = 0, \pm 1, \pm 2, \dots$)

यानी, $x = (2n + 1)\lambda D/2d$

केंद्र से n वें अदीप्त फ्रिज की दूरी है

$$x_n = (2n+1)\lambda D/2d$$

इसी प्रकार केंद्र से $(n-1)$ वें दीप्त फ्रिज की दूरी है

$$x_{(n-1)} = (2n-1)\lambda D/2d$$

$$\text{फ्रिज चौड़ाई, } \beta = xn - x_{(n-1)} = (2n + 1)\lambda D/2d - (2n-1)\lambda D/2d = \lambda D/d$$

$$(n = 0, \pm 1, \pm 2, \dots)$$

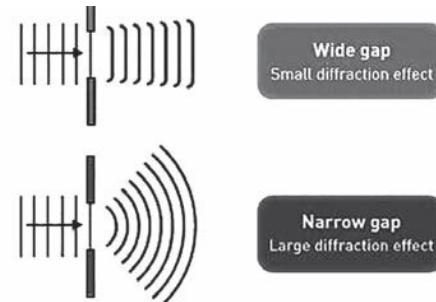
फ्रिज चौड़ाई

दो आसन्न दीप्त (अथवा अदीप्त) फ्रिजों के बीच की दूरी को फ्रिज चौड़ाई कहते हैं।

$$\beta = \lambda D / d$$

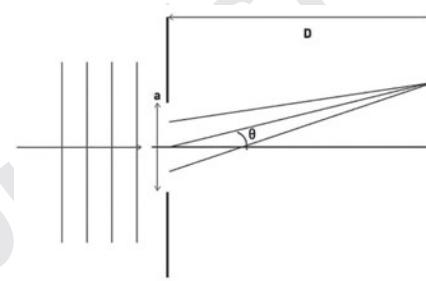
15)

What is meant by diffraction of light? Explain diffraction by a narrow slit. Explain the formation of fringe-patterns on the screen and draw a graph to show the variation of fringe intensity with angle θ .


प्रकाश के विवरण से क्या तात्पर्य है? एक संकीर्ण रेखा-छिद्द द्वारा विवरण की व्याख्या कीजिये, पर्दे पर फ्रिज - प्रारूप का बनना समझाइये तथा कोण θ के साथ फ्रिज की तीव्रता में परिवर्तन को प्रदर्शित करने के लिये ग्राफ खींचिये।

Ans-

Diffraction of light is defined as the bending of light around corners as it spreads and illuminates areas where shadows are expected.


In a single-slit diffraction experiment, we can observe the phenomenon of bending of light or diffraction which

causes light from a coherent source to interfere with itself and produce a characteristic pattern on the screen called the diffraction pattern. Diffraction is apparent when sources are so small that they are relatively the size of a wavelength of light. We can see this effect in the picture below. For large slits, the dispersion is small and generally not noticeable.

Single Slit Diffraction Formula

We shall assume the slit width $a \ll D$. D is the separation between slit and source.

We will identify the angular position of any point on the screen by θ measured from the slit center which divides the slit by $a/2$ length. To describe the pattern, we'll first look at the position of the dark fringe. Furthermore, we divide the slit into regions of equal width $a/2$.

The path difference represented by the top two rays shown is:

We can consider any number of ray pairs starting at a distance $a/2$ from each other like the two rays in the diagram below.

For a dark fringe, path difference must cause destructive interference; The path difference should be out of phase by $\lambda/2$. (λ is the wavelength)

for the first edge,

For a ray emerging from any point in the slit, there exists another ray at a distance of $a/2$ that can cause destructive interference.

Thus, destructive interference occurs at $\theta = \sin^{-1}\lambda/a$ because any ray emanating from a point has a pattern that causes destructive interference. Hence a dark fringe is obtained.

For the next fringe, we can divide the slit into 4 equal parts of $a/4$ and apply the same logic. Thus, for the second minimum:

Similarly, for the n^{th} fringe, we can divide the slit into $2n$ parts and use this condition as:

$$n\lambda = a \sin \theta$$

central maximum

The minima lies between the width of the minimum

and the central maximum, the distance between the first order minima from the center of the screen on either side of the center.

The position of the minimum given by y (measured from the center of the screen) is:

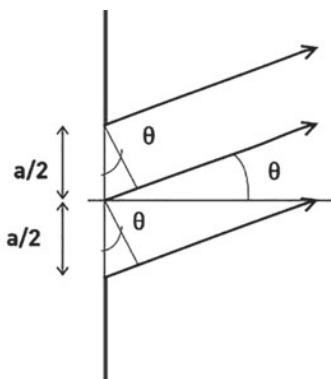
$$\tan\theta \approx \theta \approx y/d$$

for small θ ,

$$\sin\theta \approx \theta$$

$$\Rightarrow \lambda = a \sin\theta \approx a\theta$$

$$\Rightarrow \theta = y/D = \lambda/a$$


$$\Rightarrow y = \lambda D / a$$

The width of the central maximum is only twice this value.

$$\Rightarrow \text{width of central maximum} = 2\lambda D/a$$

$$\Rightarrow \text{Angular width of central maximum} = 2\theta = 2\lambda/a$$

The diffraction pattern and intensity graph is shown below.

The path difference represented by the top two rays shown is:

$$\Delta L = \frac{a}{2} \sin\theta$$

We can consider any number of ray pairs starting at a distance $a/2$ from each other like the two rays in the diagram below.

For a dark fringe, path difference must cause destructive interference; The path difference should be out of phase by $\lambda/2$. (λ is the wavelength) for the first fringe,

$$\Delta L = \frac{\lambda}{2} = \frac{a}{2} \sin\theta$$

$$\lambda = a \sin\theta$$

For a ray emerging from any point in the slit, there exists another ray at a distance of $a/2$ that can cause destructive interference.

Thus, destructive interference occurs at $\theta = \sin^{-1}\lambda/a$ because any ray emanating from a point has a pattern that causes destructive interference. Hence a dark fringe is obtained.

For the next fringe, we can divide the slit into 4 equal parts of $a/4$ and apply the same logic. Thus, for the second minimum:

$$\frac{\lambda}{2} = \frac{a}{4} \sin\theta$$

$$2\lambda = a \sin\theta$$

Similarly, for the n th fringe, we can divide the slit into $2n$

parts and use this condition as:

$$n\lambda = a \sin\theta$$

central maximum

The minima lie between the width of the minimum and the central maximum, the distance between the first order minima from the center of the screen on either side of the center.

The position of the minimum given by y (measured from the center of the screen) is:

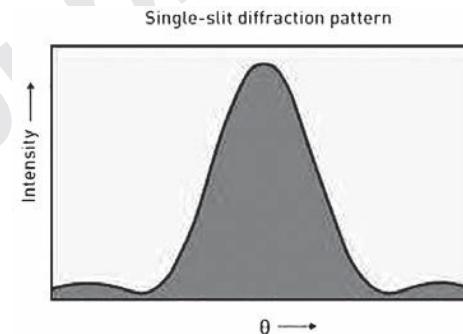
$$\tan\theta \approx \theta \approx y/D$$

for small θ ,

$$\sin\theta \approx \theta$$

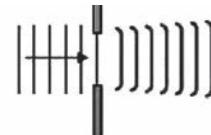
$$\Rightarrow \lambda = a \sin\theta \approx a\theta$$

$$\Rightarrow \theta = y/D = \lambda/a$$

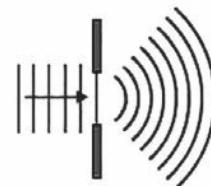

$$\Rightarrow y = \lambda D / a$$

The width of the central maximum is only twice this value.

$$\Rightarrow \text{width of central maximum} = 2\lambda D/a$$


$$\Rightarrow \text{Angular width of central maximum} = 2\theta = 2\lambda/a$$

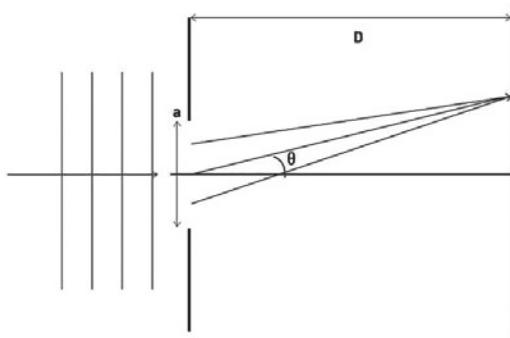
The diffraction pattern and intensity graph is shown below.



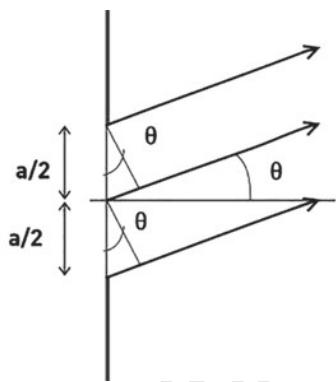
उत्तर -

प्रकाश के विवर्तन को कोनों के चारों ओर प्रकाश के मोड़ के रूप में परिभाषित किया जाता है जैसे कि यह फैलता है और उन क्षेत्रों को प्रकाशित करता है जहां छाया की उम्मीद होती है। एकल-स्लिट विवर्तन प्रयोग में, हम प्रकाश या विवर्तन की झुकाने की घटना का निरीक्षण कर सकते हैं जो एक सुसंगत स्रात से प्रकाश को स्वयं में हस्तक्षेप करने का कारण बनता है और स्क्रीन पर एक विशिष्ट पैटर्न उत्पन्न करता है जिसे विवर्तन पैटर्न कहा जाता है। विवर्तन तब स्पष्ट होता है जब स्रोत इतने छोटे होते हैं कि वे अपेक्षाकृत प्रकाश की तरंग दैर्घ्य के आकार के होते हैं। हम इस प्रभाव को नीचे चित्र में देख सकते हैं। बड़े स्लिट्स के लिए, फैलाव छोटा होता है और आम तौर पर ध्यान देने योग्य नहीं होता है।

Wide gap
Small diffraction effect



Narrow gap
Large diffraction effect


सिंगल स्लिट डिफ्रैक्शन फॉर्मूला

हम मान लेंगे कि स्लिट की चौड़ाई $a \ll D$ है। D स्लिट और

स्रोत के बीच की दूरी है।

हम स्क्रीन पर किसी भी बिंदु की कोणीय स्थिति की पहचान स्लिट केंद्र से मापे गए θ द्वारा करेंगे जो स्लिट को $a/2$ लंबाई से विभाजित करता है। पैटर्न का वर्णन करने के लिए, हम पहले डाक फ्रिंज की स्थिति देखेंगे। इसके अलावा, हम डिस्की को समान चौड़ाई वाले क्षेत्रों में विभाजित करते हैं $a/2$

दिखाई गई शीर्ष दो किरणों द्वारा प्रदर्शित पथांतर है:

$$\Delta L = \frac{a}{2} \sin \theta$$

हम किसी भी संख्या में किरण युग्मों पर विचार कर सकते हैं जो एक दूसरे से $a/2$ की दूरी से शुरू होती हैं जैसे आरेख में नीचे की दो किरणें।

एक अदीप्त फ्रिंज के लिए, पथांतर विनाशी व्यतिकरण का कारण होना चाहिए; पथ अंतर $\lambda/2$ द्वारा चरण से बाहर होना चाहिए। (λ तरंग दैर्घ्य है)

पहले फ्रिंज के लिए,

$$\Delta L = \frac{\lambda}{2} = \frac{a}{2} \sin \theta$$

$$\lambda = a \sin \theta$$

रेखांशिद में किसी भी बिंदु से निकलने वाली किरण के लिए, $a/2$ की दूरी पर एक और किरण मौजूद होती है जो विनाशकारी हस्तक्षेप का कारण बन सकती है।

इस प्रकार, $\theta = \sin^{-1} \lambda/a$ पर विनाशी व्यतिकरण होता है क्योंकि एक बिंदु से निकलने वाली किसी भी किरण का एक प्रतिरूप होता है जो विनाशी व्यतिकरण का कारण बनता है। अतः एक अदीप्त फ्रिंज प्राप्त होती है।

अगले फ्रिंज के लिए, हम डिस्की को $a/4$ के 4 बराबर भागों में विभाजित कर सकते हैं और समान तर्क लागू कर सकते हैं। इस प्रकार, दूसरी न्यूनतम के लिए:

$$\frac{\lambda}{2} = \frac{a}{4} \sin \theta$$

$$2\lambda = a \sin \theta$$

इसी प्रकार, n वें फ्रिंज के लिए, हम डिस्की को $2n$ भागों में विभाजित कर सकते हैं और इस स्थिति का उपयोग इस प्रकार कर सकते हैं।

$$n\lambda = a \sin \theta$$

केंद्रीय अधिकतम

मिनीमा न्यूनतम और केंद्रीय अधिकतम की चौड़ाई के बीच स्थित है, केंद्र के दोनों किनारों पर स्क्रीन के केंद्र से पहली और मिनीमा के बीच की दूरी है।

y द्वारा दी गई निप्रिष्ठ की स्थिति (स्क्रीन के केंद्र से मापी गई) है:

$$\tan \theta \approx y/D$$

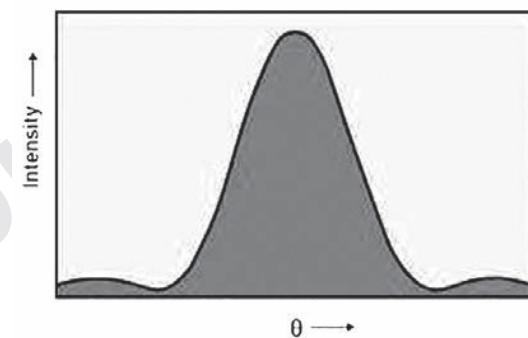
छोटे θ के लिए,

$$\sin \theta \approx \theta$$

$$\Rightarrow \lambda = a \sin \theta \approx a\theta$$

$$\Rightarrow \theta = y/D = \lambda/a$$

$$\Rightarrow y = \lambda D / a$$

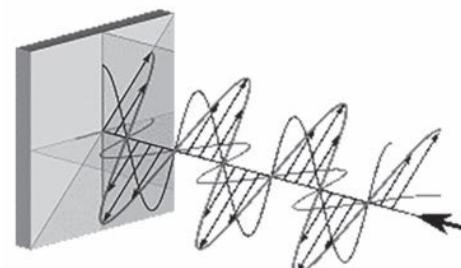

केंद्रीय अधिकतम की चौड़ाई इस मान से केवल दोगुनी है

$$\Rightarrow \text{केंद्रीय अधिकतम की चौड़ाई} = 2\lambda D/a$$

$$\Rightarrow \text{केंद्रीय अधिकतम की कोणीय चौड़ाई} = 2\theta = 2\lambda/a$$

विवरण पैटर्न और तीव्रता ग्राफ नीचे दिखाया गया है।

Single-slit diffraction pattern


16)

What do you understand by polarization of light? How does this prove the transverse nature of light waves? Explain.

प्रकाश के ध्वनि से क्या समझते हैं? इससे प्रकाश- तरंगों की अनुप्रस्थ प्रकृति कैसे प्रमाणित होती है? समझाइये।

Ans-

light waves that vibrate in more than one plane are referred to as unpolarized light such as the light emitted by the sun, a lamp, or candle flame is unpolarized light. Such light waves consist of an electromagnetic wave that vibrates in a variety of directions. However, it is possible to transform unpolarized light into polarized light.

Polarized light waves are the waves in which the vibrations occur in a single plane. The process of transforming unpolarized light into polarized light is

known as polarization.

The phenomenon of restricting the vibration of light (electric field) in a particular direction (plane), perpendicular to the direction of wave motion is called polarization of light.

The polarization of transverse waves.

Let a rope AB be passed through two parallel vertical slits S_1 and S_2 placed close to each other. The rope is fixed at the end B. If the free end A of the rope is moved up and down perpendicular to its length, transverse waves are generated with vibrations parallel to the slit. These waves pass through both S_1 and S_2 without any change in their amplitude. But if S_2 is made horizontal, the two slits are perpendicular to each other. Now, no vibrations will pass through S_2 and the amplitude of vibrations will become zero. i.e. the portion S_2B is without wave motion as shown in the figure.

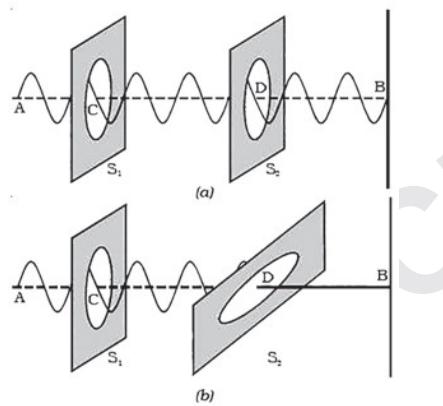


Fig: Polarization of transverse waves

On the other hand, if longitudinal waves are generated in the rope by moving the rope along forward and backward, the vibrations will pass through S_1 and S_2 irrespective of their positions.

This implies that the orientation of the slits has no effect on the propagation of the longitudinal waves, but the propagation of the transverse waves is affected if the slits are not parallel to each other.

A similar phenomenon has been observed in light when light passes through a tourmaline crystal.

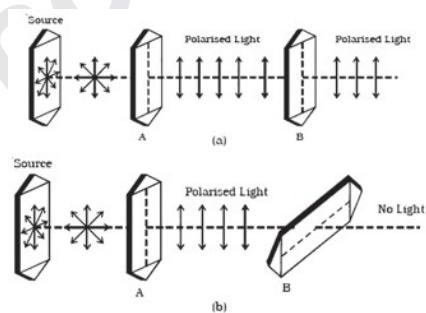
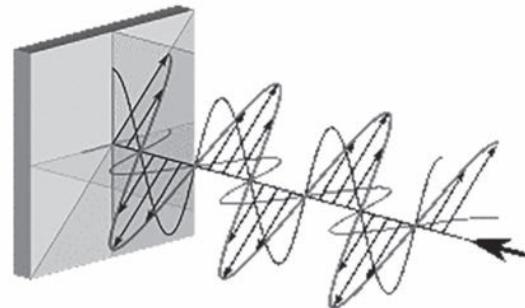


Fig: Polarization of transverse waves

Light from the source is allowed to fall on a tourmaline crystal which is cut parallel to its optic axis (Figure: a).

The emergent light will be slightly coloured due to the natural color of the crystal. When the crystal A is rotated, there is no change in the intensity of the emergent light. Place another crystal B parallel to A in

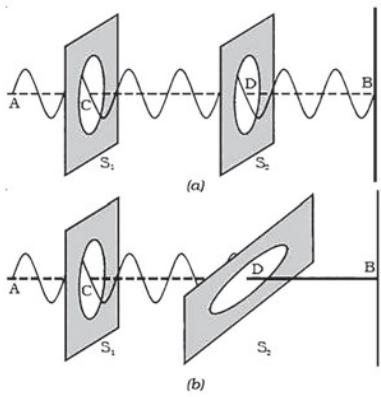

the path of the light. When both the crystals are rotated together so that their axes are parallel, the intensity of light coming out of B does not change. When the crystal B alone is rotated, the intensity of the emergent light from B gradually decreases. When the axis of B is at right angles to the axis of A, no light emerges from B (Figure: b).

If the crystal B is further rotated, the intensity of the light coming out of B gradually increases and is maximum again when their axis is parallel.

Comparing these observations with the mechanical analogue discussed earlier, it is concluded that the light waves are transverse in nature.

उत्तर -

एक प्रकाश तरंग जो एक से अधिक तलों में कंपन करती है, उसे अध्युकृत प्रकाश कहा जाता है जैसे कि सूर्य द्वारा उत्सर्जित प्रकाश, एक दीपक, या मोमबत्ती की लौ अध्युकृत प्रकाश है। ऐसी प्रकाश तरंगों में एक विद्युत चुम्बकीय तरंग होती है जो विभिन्न दिशाओं में कंपन करती है। हालांकि, अध्युकृत प्रकाश को ध्रुवीकृत प्रकाश में बदलना संभव है।

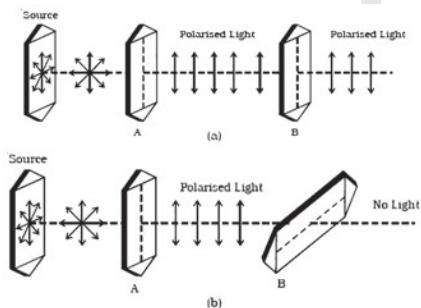


ध्रुवीकृत प्रकाश तरंगों वे तरंगों होती हैं जिनमें कंपन एक ही तल में होता है। अध्युकृत प्रकाश को ध्रुवीकृत प्रकाश में बदलने की प्रक्रिया को ध्रुवीकरण के रूप में जाना जाता है।

प्रकाश के कंपन (विद्युत क्षेत्र) को एक विशेष दिशा (तल) में तरंग गति की दिशा के लम्बवत् सीमित करने की घटना को प्रकाश का ध्रुवीकरण कहा जाता है।

अनुप्रस्थ तरंगों का ध्रुवीकरण।

एक रस्सी AB को दो समांतर ऊर्ध्वाधर स्लिट्स S_1 और S_2 के माध्यम से एक दूसरे के करीब रखा जाता है। रस्सी अंत B पर तय की गई है। यदि रस्सी के मुक्त सिर A को उसकी लंबाई के लम्बवत् ऊपर और नीचे ले जाया जाता है, तो स्लिट के समानांतर कंपन के साथ अनुप्रस्थ तरंगें उत्पन्न होती हैं। ये तरंगें अपने आयाम में बिना किसी बदलाव के S_1 और S_2 दोनों से होकर गुजरती हैं। लेकिन अगर S_2 को क्षैतिज बनाया जाता है, तो दो स्लिट एक दूसरे के लम्बवत् होते हैं। अब, कोई भी कंपन S_2 से नहीं गुजरेगा और कंपन का आयाम शून्य हो जाएगा। i.e. S_2 बिना तरंग गति के है जैसा कि चित्र में दिखाया गया है।



चित्र: अनुप्रस्थ तरंगों का ध्रुवीकरण

दूसरी ओर, यदि रस्सी को आगे और पीछे ले जाकर रस्सी में अनुदैर्घ्य तरंगें उत्पन्न की जाती हैं, तो कंपन उनकी स्थिति के बावजूद S_1 और S_2 से होकर गुजरेगा।

इसका तात्पर्य यह है कि स्लिट्स के उन्मुखीकरण का अनुदैर्घ्य तरंगों के प्रसार पर कोई प्रभाव नहीं पड़ता है, लेकिन स्लिट्स एक दूसरे के समानांतर नहीं होने पर अनुप्रस्थ तरंगों का प्रसार प्रभावित होता है।

इसी तरह की घटना प्रकाश में देखी गई है जब प्रकाश टूमलाइन क्रिस्टल से होकर गुजरता है।

चित्र: अनुप्रस्थ तरंगों का ध्रुवीकरण

स्रोत से प्रकाश को एक टूमलाइन क्रिस्टल पर गिरने दिया जाता है जो इसके ऑण्टिक अक्ष के समानांतर कट जाता है (चित्र: a)।

क्रिस्टल के प्राकृतिक रंग के कारण उभरती हुई रोशनी थोड़ी रंगीन होगी। जब क्रिस्टल A को धुमाया जाता है, तो निर्गत प्रकाश की तीव्रता में कोई परिवर्तन नहीं होता है। प्रकाश के पथ में A के समानांतर एक और क्रिस्टल B रखें। जब दोनों क्रिस्टलों को एक साथ इस प्रकार धुमाया जाता है कि उनके अक्ष समानान्तर हों, तो B से निकलने वाले प्रकाश की तीव्रता में कोई परिवर्तन नहीं होता। जब अकेले क्रिस्टल B को धुमाया जाता है, तो B से निर्गत प्रकाश की तीव्रता धीरे-धीरे कम हो जाती है। जब B की धूरी A की धूरी के समकोण पर होती है, तो B से कोई प्रकाश नहीं निकलता है (चित्र: b)।

यदि क्रिस्टल B को और धुमाया जाता है, तो B से निकलने वाले प्रकाश की तीव्रता धीरे-धीरे बढ़ती है और फिर से अधिकतम होती है जब उनकी धूरी समानांतर होती है।

इन प्रेक्षणों की तुलना पहले चर्चित यांत्रिक अनुरूप से करने पर यह निष्कर्ष निकलता है कि प्रकाश तरंगें अनुप्रस्थ प्रकृति की होती हैं।