SET 3 – Mechanical Properties of Solids

1. The stress applied per unit area is measured in — (a) Pascal (Pa) (b) Joule (J) (c) Newton (N) (d) m/s²
2. The strain produced in a body is — (a) The ratio of change in dimension to original dimension (b) The ratio of force to area (c) Product of stress and modulus (d) Reciprocal of stress
3. The SI unit of Young's modulus is — (a) N/m² (b) N/m³ (c) J/m³ (d) N·m
4. The dimensional formula of Young's modulus is — (a) [ML ⁻¹ T ⁻²] (b) [MLT ⁻²] (c) [M ^o L ^o T ^o] (d) [M ⁻¹ L ³ T ⁻²]
5. The property of a material to regain its shape after removing the deforming force is calle (a) Elasticity (b) Plasticity (c) Ductility (d) Rigidity
6. The material which can be drawn into wires is called — (a) Ductile (b) Brittle

(c) Malleable (d) Hard

7. The material which can be hammered into sheets is called — (a) Malleable (b) Ductile (c) Elastic (d) Brittle
8. Which of the following is most ductile? (a) Gold (b) Copper (c) Aluminium (d) Lead
9. Hooke's law is valid up to — (a) Elastic limit (b) Breaking point (c) Plastic limit (d) Yield point
10. The ratio of stress to strain is constant within — (a) Elastic limit (b) Plastic limit (c) Breaking point (d) None
11. Stress is — (a) Force per unit area (b) Area per unit force (c) Force × area (d) Energy per unit volume
12. Strain is — (a) Change in dimension/original dimension (b) Force per unit area (c) Product of stress and force (d) Energy per unit volume

13. The slope of stress–strain curve in the elastic region gives —(a) Young's modulus(b) Bulk modulus(c) Shear modulus(d) Poisson's ratio	
 14. Hooke's law states — (a) Stress ∝ Strain (b) Stress ∝ Strain² (c) Stress ∝ 1/Strain (d) Stress = constant 	
 15. The limit beyond which a body does not return to its original shape is – (a) Elastic limit (b) Proportional limit (c) Yield point (d) Breaking point 	2
16. The work done per unit volume to stretch a wire is — (a) ½ × Stress × Strain (b) Stress × Strain (c) Force × Distance (d) Stress / Strain	
 17. A body is said to be perfectly elastic if — (a) It regains its original shape completely (b) It partially regains its shape (c) It does not regain at all (d) It breaks easily 	
18. A body is said to be perfectly plastic if — (a) It does not regain its shape at all (b) It regains completely (c) It returns partially (d) It deforms temporarily	

19. The slope of the straight-line portion of stress–strain curve represents —		
(a) Modulus of Elasticity		
(b) Shear Modulus (c) Bulk Modulus		
(d) Rigidity		
(a) Nigitally		
20. The point where permanent deformation begins is —		
(a) Yield point		
(b) Elastic limit		
(c) Breaking point		
(d) Plastic limit		
21. The stress corresponding to the breaking point is called —		
(a) Breaking stress		
(b) Yield stress		
(c) Ultimate stress		
(d) Elastic stress		
22. The ratio of lateral strain to longitudinal strain is — (a) Poisson's ratio (b) Bulk modulus (c) Young's modulus (d) Strain ratio		
23. The unit of strain energy per unit volume is —		
(a) J/m ³		
(b) N/m ²		
(c) N/m³		
(d) Pa		
24. The stress required to double the length of a wire of Young's modulus Y is — (a) Y (b) 2Y (c) Y/2		
(d) ½Y		

25. A material with large Young's modulus is — (a) Hard to stretch (b) Easy to stretch (c) Very plastic (d) Easily compressible
26. Bulk modulus is the ratio of — (a) Volume stress to volume strain (b) Shear stress to shear strain (c) Longitudinal stress to longitudinal strain (d) Force to area
27. For an incompressible fluid, bulk modulus is — (a) Infinite (b) Zero (c) Finite (d) Negative
28. The bulk modulus of air is — (a) Small (b) Large (c) Infinite (d) Zero
 29. The ratio of change in volume to original volume is called — (a) Volumetric strain (b) Shear strain (c) Longitudinal strain (d) Lateral strain
 30. The ratio of shear stress to shear strain is called — (a) Modulus of rigidity (b) Bulk modulus (c) Poisson's ratio (d) Elastic limit

31. For gases, the modulus of rigidity is —
(a) Zero
(b) Infinite
(c) Finite
(d) Negative
32. The maximum stress a material can withstand is called —
(a) Breaking stress
(b) Yield stress
(c) Elastic stress
(d) Ultimate stress
33. The stress–strain curve of a ductile material shows —
(a) Elastic, yield, plastic, and fracture regions
(b) Only elastic region
(c) Only plastic region
(d) No definite shape
 34. The area under the stress–strain curve represents — (a) Energy stored per unit volume (b) Work per unit length (c) Force × displacement (d) Volume energy
25. The Deissen's vatio for steel is approximately.
35. The Poisson's ratio for steel is approximately —(a) 0.3
(a) 0.5 (b) 0.5
(c) 0.1
(d) 0.7
36. The Poisson's ratio for cork is approximately — (a) 0 (b) 0.5 (c) 1
(d) 0.3

37. The relationship among Y, K, and G is —	
(a) $Y = 9KG / (3K + G)$	
(b) $Y = 3KG / (K + 3G)$	
(c) $Y = 2KG / (3K - G)$	
(d) Y = K + G	
38. The relation among Y, K, and Poisson's ratio (σ) is —	
(a) $Y = 3K(1 - 2\sigma)$	
(b) $Y = K(1 - \sigma)$	
$(c) Y = 9K(1 + \sigma)$	
$(d) Y = 2K(1 + \sigma)$	
	Co
39. The work done per unit volume for stress S and strain e is —	
(a) ½Se	
(b) Se	
(c) S/e	
(d) e/S	
40. The property by which a body resists deformation is —	
(a) Rigidity	
(b) Elasticity	
(c) Plasticity	
(d) Brittleness	
44. A particular visid bady bas	
41. A perfectly rigid body has —	
(a) Infinite Young's modulus	
(b) Zero Young's modulus	
(c) Finite modulus	
(d) None	
42. A perfectly plastic body has —	
(a) Zero modulus of elasticity	
(b) Infinite modulus of elasticity	
(c) Constant modulus	
(d) Negative modulus	

 43. In an elastic material, stress and strain are — (a) Directly proportional (b) Inversely proportional (c) Equal (d) Constant 	
44. The point on stress–strain curve corresponding to permanent deformation is — (a) Yield point (b) Breaking point (c) Elastic limit (d) Proportional limit	
 45. In Hooke's law, the proportionality constant is — (a) Young's modulus (b) Shear modulus (c) Bulk modulus (d) Poisson's ratio 	
 46. Elasticity of steel is greater than that of rubber because — (a) Steel has greater Young's modulus (b) Rubber has smaller Young's modulus (c) Both (a) and (b) (d) None 	
47. The unit of modulus of rigidity is — (a) N/m² (b) N/m³ (c) J/m³ (d) N·m	
48. The highest value of Poisson's ratio for a stable material is — (a) 0.5 (b) 1 (c) 0 (d) 2	

- **49.** Stress is directly proportional to —
- (a) Force
- (b) Area
- (c) Strain
- (d) Length
- **50.** Rubber is less elastic than steel because —
- (a) It has smaller Young's modulus
- (b) It stretches more for the same stress
- (c) It obeys Hooke's law poorly
- (d) All of these

Answer Key – SET 3

- 1 (a) 2 (a) 3 (a) 4 (a) 5 (a) 6 (a) 7 (a) 8 (a) 9 (a) 10 (a) 11 (a) 12 (a) 13 (a) 14 (a) 15 (a) 16 (a) 17 (a) 18 (a) 19 (a) 20 (a) 21 (a) 22 (a) 23 (a) 24 (a) 25 (a) 26 (a) 27 (a) 28 (a) 29 (a) 30 (a) 31 (a) 32 (a) 33 (a) 34 (a) 35 (a) 36 (a) 37 (a) 38 (a) 39 (a) 40 (a)
- 41 (a) 42 (a) 43 (a) 44 (a) 45 (a) 46 (c) 47 (a) 48 (a) 49 (c) 50 (d)