ATOMIC STRUCTURE

Set 1

1. Who proposed the atomic theory that regarded the atom as	s the	ultimate
indivisible particle of matter?		

- a) J.J. Thomson
- b) John Dalton
- c) Ernest Rutherford
- d) Niels Bohr

2. The cathode rays start from the	and move towards the

- a) anode, cathode
- b) cathode, anode
- c) nucleus, electron
- d) proton, neutron
- 3. Who determined the charge-to-mass ratio (e/m_e) of the electron?
- a) R.A. Millikan
- b) J.J. Thomson
- c) James Chadwick
- d) Michael Faraday
- 4. The charge on an electron was determined by:
- a) Rutherford's gold foil experiment
- b) Millikan's oil drop experiment
- c) Thomson's cathode ray experiment
- d) Bohr's atomic model
- 5. Which subatomic particle was discovered by James Chadwick?
- a) Electron
- b) Proton
- c) Neutron

6. The positively charged particles discovered in the modified cathode ray tube are called:a) Anode raysb) Canal raysc) Alpha raysd) Beta rays
7. Thomson's atomic model is also known as the:a) Nuclear modelb) Planetary modelc) Plum pudding modeld) Quantum model
 8. Rutherford's α-particle scattering experiment led to the discovery of: a) Electron b) Proton c) Nucleus d) Neutron
9. Most of the space in an atom is:a) Filled with positive chargeb) Occupied by neutronsc) Emptyd) Occupied by electrons
10. The radius of the nucleus is approximately times smaller than the radius of the atom. a) 10 b) 100 c) 10,000 d) 100,000

d) Positron

- 11. The number of protons in the nucleus of an atom is called its:a) Mass numberb) Atomic numberc) Neutron number
- 12. Atoms of the same element with the same atomic number but different mass numbers are called:
- a) Isobars

d) Nucleon number

- b) Isotones
- c) Isotopes
- d) Isomers
- 13. The mass number (A) of an atom is given by:
- a) Z + n
- b) Z n
- c) n Z
- d) Z * n
- 14. Which isotope of hydrogen has one proton and two neutrons?
- a) Protium
- b) Deuterium
- c) Tritium
- d) Hydronium
- 15. A major drawback of Rutherford's model was that it could not explain:
- a) The presence of a nucleus
- b) The stability of the atom
- c) The positive charge of the nucleus
- d) The scattering of alpha particles
- 16. According to Maxwell's theory, an accelerating charged particle should:
- a) Gain mass
- b) Emit electromagnetic radiation

- c) Lose charge
- d) Become stable
- 17. The phenomenon where certain metals emit electrons when exposed to light is called:
- a) Black body radiation
- b) Photoelectric effect
- c) Atomic spectra
- d) Radioactivity
- 18. The minimum frequency of light required to eject an electron from a metal surface is called:
- a) Critical frequency
- b) Threshold frequency
- c) Peak frequency
- d) Work frequency
- 19. Who explained the photoelectric effect using Planck's quantum theory?
- a) Max Planck
- b) Albert Einstein
- c) Niels Bohr
- d) de Broglie
- 20. The energy of a photon is given by:
- a) E = h/c
- b) $E = h\lambda$
- c) E = hv
- d) E = c/v
- 21. The constant 'h' in Planck's equation is known as:
- a) Rydberg constant
- b) Planck's constant
- c) Boltzmann constant
- d) Avogadro's constant

- 22. The spectrum of white light is:
- a) A line spectrum
- b) An absorption spectrum
- c) A continuous spectrum
- d) A band spectrum
- 23. The spectrum produced by excited hydrogen atoms is a:
- a) Continuous spectrum
- b) Band spectrum
- c) Line spectrum
- d) Absorption spectrum
- 24. The series of lines in the hydrogen spectrum that lies in the visible region is the:
- a) Lyman series
- b) Balmer series
- c) Paschen series
- d) Brackett series
- 25. The formula for the wave number (\tilde{v}) of the hydrogen spectrum is given by:
- a) Rydberg
- b) Bohr
- c) Planck
- d) Einstein
- 26. Bohr's model of the atom was successful in explaining the spectrum of:
- a) Hydrogen atom
- b) Helium atom
- c) Lithium atom
- d) All atoms
- 27. According to Bohr's postulate, the angular momentum of an electron is:

- a) Constant b) Zero
- c) Quantized
- d) Random
- 28. The expression for the angular momentum of an electron in a Bohr orbit is:
- a) mvr = n
- b) mvr = n/h
- c) $mvr = nh/2\pi$
- d) $mvr = 2\pi/nh$
- 29. The radius of the first Bohr orbit for hydrogen is:
- a) 52.9 pm
- b) 105.8 pm
- c) 211.6 pm
- d) 0.529 pm
- 30. The energy of an electron in the nth Bohr orbit is given by:
- a) E□ = -R_H / n
- b) $E \square = -R_H / n^2$
- c) $E \square = +R_H / n^2$
- d) $E \square = -R_H * n^2$
- 31. For a hydrogen-like ion (He⁺, Li²⁺), the energy of an electron:
- a) Decreases with increasing Z
- b) Is independent of Z
- c) Increases with increasing Z
- d) Becomes positive
- 32. The de Broglie equation relates a particle's wavelength to its:
- a) Energy
- b) Frequency
- c) Momentum

- d) Velocity
- 33. The de Broglie wavelength (λ) is given by:
- a) $\lambda = h/mv$
- b) $\lambda = mv/h$
- c) $\lambda = hc/E$
- d) $\lambda = E/h$
- 34. Heisenberg's Uncertainty Principle states that it is impossible to know precisely both the:
- a) Energy and spin of an electron
- b) Mass and charge of an electron
- c) Position and momentum of an electron
- d) Speed and volume of an atom
- 35. The mathematical expression for Heisenberg's Uncertainty Principle is:
- a) $\Delta x * \Delta p \ge h/4\pi$
- b) $\Delta x * \Delta p \le h/4\pi$
- c) $\Delta E * \Delta t \ge h/4\pi$
- d) $\Delta v * \Delta t \ge h/4\pi$
- 36. The concept that matter exhibits both particle and wave-like properties is known as:
- a) Quantum mechanics
- b) Wave-particle duality
- c) Uncertainty principle
- d) Corpuscular theory
- 37. The fundamental equation of quantum mechanics was developed by:
- a) Heisenberg
- b) de Broglie
- c) Schrödinger
- d) Bohr

38. The solution to the Schrödinger equation for an electron is called a:a) Orbitb) Orbitalc) Shell
d) Subshell
39. An atomic orbital is defined by which quantum numbers? a) n and I b) n, I, and m_I c) n and m_s d) I and m_I
40. The principal quantum number (n) defines the:a) Shape of the orbitalb) Size and energy of the orbitalc) Orientation of the orbitald) Spin of the electron
41. The azimuthal quantum number (I) defines the:a) Size of the orbitalb) Energy of the orbitalc) Shape of the orbitald) Orientation of the orbital
42. For a given value of n, the possible values of I range from:a) 1 to nb) 0 to nc) 0 to n-1d) 1 to n-1
 43. The number of orbitals in a subshell is given by: a) n² b) 2l + 1 c) 2n + 1

d) l ²
 44. The magnetic quantum number (m_I) defines the: a) Energy of the orbital b) Shape of the orbital c) Orientation of the orbital d) Spin of the electron
45. The spin quantum number (m_s) can have values of: a) -1, 0, +1 b) 0, +1 c) -1/2, +1/2 d) -1, +1
46. How many orbitals are there in the n=3 shell? a) 3 b) 6 c) 9 d) 18
47. The maximum number of electrons that can be accommodated in a shell is given by: a) n b) 2n c) n² d) 2n²
48. The shape of an s orbital is:a) Dumbbellb) Sphericalc) Double dumbbelld) Complex
49. How many electrons can a single orbital hold?

- a) 1
- b) 2
- c) 6
- d) 10
- 50. The rule that electrons fill orbitals singly before pairing up is:
- a) Aufbau principle
- b) Pauli exclusion principle
- c) Hund's rule
- d) Heisenberg's principle

Answer Key: Set 1

- b) John Dalton
- 2. b) cathode, anode
- 3. b) J.J. Thomson
- 4. b) Millikan's oil drop experiment
- 5. c) Neutron
- 6. b) Canal rays
- 7. c) Plum pudding model
- 8. c) Nucleus
- 9. c) Empty
- 10.d) 100,000 (or 10⁵)
- 11.b) Atomic number
- 12.c) Isotopes
- 13.a) Z + n
- 14.c) Tritium
- 15.b) The stability of the atom
- 16.b) Emit electromagnetic radiation
- 17.b) Photoelectric effect
- 18.b) Threshold frequency
- 19.b) Albert Einstein
- 20. c) E = hv
- 21.b) Planck's constant
- 22.c) A continuous spectrum

- 23.c) Line spectrum
- 24.b) Balmer series
- 25.a) Rydberg
- 26.a) Hydrogen atom
- 27.c) Quantized
- 28.c) mvr = $nh/2\pi$
- 29. a) 52.9 pm
- 30.b) E🛚 = -R_H / n²
- 31.a) Decreases with increasing Z (becomes more negative)
- 32.c) Momentum
- 33.a) λ = h/mv
- 34.c) Position and momentum of an electron
- 35. a) $\Delta x * \Delta p \ge h/4\pi$
- 36.b) Wave-particle duality
- 37. c) Schrödinger
- 38.b) Orbital
- 39.b) n, l, and m_l
- 40.b) Size and energy of the orbital
- 41.c) Shape of the orbital
- 42. c) 0 to n-1
- 43.b) 2l + 1
- 44.c) Orientation of the orbital
- 45.c) -1/2, +1/2
- 46.c) 9
- 47. d) 2n²
- 48.b) Spherical
- 49.b) 2
- 50.c) Hund's rule